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RESUMEN 
El desarrollo de la industria espacial puede provocar su propia desaparición. El crecimiento de la actividad espacial 
implica un aumento sin precedentes de la basura espacial que, junto a la radiación, puede suponer la inhabilitación o 
destrucción de las astronaves. Ante esta problemática, en esta investigación diseñamos un escudo que proteja a las 
astronaves frente a los impactos y la radiación minimizando el peso. Para ello, diseñamos en primer lugar tres 
estructuras, dos de ellas patentadas y una de estas en proceso de comercialización, basadas en geometría fractal que 
distribuyen de manera óptima la fuerza. En segundo lugar, atendemos la protección frente a la radiación mediante un 
estudio de diferentes distribuciones porosas para concluir que todas ofrecen el mismo nivel promedio de protección, 
aunque las distribuciones regulares tienen peligrosas fallas. Completamos el estudio radiactivo optimizando la forma 
de interfaces para disipar el calor, concluyendo que las estructuras fractales son efectivas cuando desarrollan esta 
característica en las zonas de alta temperatura. Finalmente, estas investigaciones nos llevan a atender problemáticas 
en diferentes áreas: el estudio de la forma de los árboles tras carga, el desarrollo de un método versátil de simulación 
de terrenos y la definición de una clase de funciones fractales. 

PALABRAS CLAVE: Industria espacial, basura espacial, radiación, escudos protectores, fractales. 

ABSTRACT 
The development of the space industry may lead to its own extinction. The growth of space activity implies an 
unprecedented increase in space debris which, together with radiation, can lead to the disabling or destruction of 
spacecraft. Faced with this problem, in this research we designed a shield to protect spacecraft against impacts and 
radiation while minimizing weight. To this end, we first designed three structures, two of them patented and one 
of them in the process of commercialization, based on fractal geometry that optimally distribute the force. Secondly, 
we address radiation protection by studying different porous distributions to conclude that they all offer the same 
average level of protection, although regular distributions have dangerous flaws. We complete the radiative study 
by optimizing the shape of interfaces to dissipate heat, concluding that fractal structures are effective when they 
develop this feature in high temperature zones. Finally, these investigations lead us to address problems in different 
areas: the study of the shape of trees after load, the development of a versatile method of terrain simulation and 
the definition of a class of fractal functions. 
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1. LA INDUSTRIA ESPACIAL Y SUS AMENAZAS 

La industria espacial es un pilar indispensable de nuestra sociedad. La navegación (marítima, 
aérea y terrestre) y el transporte asociado, las telecomunicaciones, la observación terrestre 
(predicción meteorológica y explotación del medio) y la exploración espacial son las 
actividades más destacadas. El aumento constante de la demanda de los servicios asociados a 
estas actividades motiva el desarrollo tecnológico y crecimiento del sector. 

A nivel económico, este crecimiento se aprecia en la previsión al alza del presupuesto de 
agencias espaciales como la NASA (1). Por otro lado, dicho crecimiento también se ve 
reflejado en la evolución del número de vehículos espaciales que son lanzados cada año, con 
un fuerte aumento en el último lustro (ver Figura 1.1) (2). En estos lanzamientos, el tipo de 
vehículo enviado al espacio por excelencia es el satélite artificial (2), y dentro de estos, cabe 
destacar la irrupción de los micro y nano satélites. El atractivo de esta clase de artefactos 
radica en su bajo peso, ya que la minimización del peso es un factor clave en la industria 
espacial debido al elevado coste asociado a cada kg puesto en órbita (3). 

Figura 1.1. Número de astronaves lanzadas en el período 2016-2024. 

Sin embargo, el aumento de nanosatélites y otro tipo de astronaves conlleva en sí mismo 
una grave amenaza: el aumento de la basura espacial. Esta basura se compone de piezas de 
astronaves, pintura, partes de cohetes, etc. (4), y se estima que actualmente hay en órbita 
54.000 partículas de basura mayores de 10 cm y 1,2 millones entre 1 cm y 10 cm (5). El 
peligro de la basura espacial es su elevada energía cinética, ya que puede impactar contra 
las astronaves a velocidades de hasta 15 km/s, lo que generaría graves daños en las mismas 
(6). Además de la basura espacial, los satélites y otras astronaves deben afrontar también la 
amenaza de la radiación, en especial la radiación de partículas. La inutilización o destrucción 
de los satélites debido a la basura espacial o la radiación generaría pérdidas económicas 
muy elevadas, ya que se perderían la inversión realizada para construirlos (que puede ser 
de cientos de millones de euros (7)) y los beneficios por el servicio que prestan (sólo la 
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industria del satélite generó $285B en 2023 (8)). Por esta razón, es indispensable proteger 
las astronaves, y en particular los satélites, de forma efectiva. 

Actualmente, la protección de las astronaves se lleva a cabo mediante el escudo Whipple 
(9). Este escudo se forma de capas planas y paralelas de aluminio, Nextel ® y Kevlar ®, 
separadas entre sí una cierta distancia para fragmentar y dispersar la energía de las 
partículas que impactan, complementadas con una capa de aislante térmico para la 
radiación. Las principales investigaciones se centran en los materiales (10, 11, 12), aunque 
también se está experimentando sobre la geometría de las capas (13, 14, 15). Sin embargo, 
en los satélites y nanosatélites no se implementa una protección específica, sino que se 
utiliza la propia estructura como escudo, ya que el escudo Whipple es demasiado 
voluminoso y masivo para ser implementado en este tipo de satélites. Por este motivo, es 
vital explorar escudos con formas geométricas más allá de las capas planas y paralelas. 

El objetivo fundamental de esta investigación es optimizar el diseño de los escudos 
protectores de las astronaves para que, con el mínimo peso, maximicen la resistencia al 
impacto y aseguren una protección efectiva contra la radiación. La consecución de este 
objetivo fundamental requiere que se cumplan los siguientes objetivos parciales: 1) Diseñar 
una estructura para distribuir las fuerzas generadas en el impacto (Sección 2), 2) Integrar 
en el escudo la protección frente a la radiación (Sección 3), 3) Disipar el calor generado 
(Sección 4) y 4) Buscar aplicaciones en otras ramas (Secciones 5, 6, 7 y 8). 

2. DISTRIBUCIÓN ÓPTIMA DE FUERZAS 

En esta sección mostramos diferentes estructuras capaces de distribuir de manera óptima 
la fuerza del impacto de partículas de basura espacial. Dado que dichas partículas son de 
tamaño reducido, modelizamos la fuerza de su impacto como puntual. Además, 
consideramos la dirección de dicha fuerza perpendicular a la del soporte de las estructuras 
(ya que estas se pueden orientar según las direcciones preferentes de impacto) y que dicha 
fuerza es estática, por simplicidad. 

Por tanto, damos solución al siguiente problema: dada una fuerza puntual estática, ¿qué 
estructuras permiten distribuir dicha fuerza de forma óptima? Muchos problemas de 
optimización, como este, son resueltos de forma natural empleando estructuras fractales 
(16, 17, 18). Guiados por esta idea, nos centramos en una estructura básica de la ingeniería, 
el triángulo, y buscamos los fractales asociados, encontrando el triángulo de Sierpinski (ver 
Figura 2.1).  
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Figura 2.1. Triángulo de Sierpinski. 

En cuanto al tipo de estructura, en esta investigación nos centramos en estructuras tipo 
cercha, debido a su rápida, sencilla y económica instalación. Las cerchas están formadas por 
barras unidas mediante nodos, y conectadas al soporte mediante apoyos puntuales. En este 
caso, consideramos tres tipos de apoyos: elástico (se opone al movimiento con una 
resistencia proporcional a la distancia que recorre el apoyo, como un muelle), móvil (no se 
opone al movimiento) y fijo (se opone al movimiento con una resistencia infinita y no 
permite que el apoyo se desplace). 

Por último, la distribución óptima de fuerzas buscada es la distribución uniforme, ya que es 
la única que garantiza que el máximo de fuerza sea el mínimo posible, y por tanto exige la 
mínima resistencia a la astronave. Por ello, las estructuras buscadas transformarán una 
carga puntual en una carga uniforme. 

2.1. Estructura bidimensional con apoyos fijos 

El triángulo de Sierpinski se forma mediante un proceso iterativo basado en la generación 
de cuatro triángulos, uno de ellos invertido, dentro de un mismo triángulo (ver Figura 2.1). 
Este proceso, repetido infinitamente, genera el fractal, pero a nivel ingenieril debemos 
quedarnos con un número finito de iteraciones, obteniendo un prefractal. Si tomamos un 
prefractal del triángulo de Sierpinski de 𝑁𝑁 iteraciones y disponemos un apoyo allí donde 
haya un vértice de triángulo en su base, tenemos que esa estructura es mecánicamente 
equivalente a una Estructura de quasi-Sierpinski de 𝑁𝑁 niveles (ver Figura 2.2). Denotamos 
por 𝐿𝐿 la longitud de las barras inclinadas del primer nivel y por 𝛽𝛽 al ángulo de inclinación 
de dichas barras. 
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Figura 2.2. Estructura de quasi-Sierpinski de 𝑁𝑁 niveles, correspondiente a 𝑁𝑁 = 5. 

La Estructura tiene un número finito de apoyos, por lo que aproximamos la distribución 
uniforme en el soporte haciendo que cada apoyo soporte un valor de fuerza proporcional al 
área que cubre cada apoyo; esto es, los apoyos exteriores soportarán una fuerza de valor 
𝐹𝐹/2𝑁𝑁, mientras que los interiores soportarán una fuerza de valor 𝐹𝐹/2𝑁𝑁−1. El criterio de 
distribución uniforme determina, mediante la primera ley de Newton, los esfuerzos que han 
de soportar las barras de la estructura. Por otro lado, como se mencionó en la introducción, 
es necesario minimizar el peso de la estructura. Para ello, debemos garantizar que ninguna 
barra de esta esté sobre dimensionada, por lo que todas deben trabajar al mismo valor de 
tensión. Este criterio, una vez conocido el esfuerzo de cada barra, determina el área de la 
sección transversal de todas las barras de la estructura, denotando por 𝐴𝐴 el área de la 
sección transversal de las barras del primer nivel. Por otro lado, consideramos que todas 
barras son del mismo material, cuyo módulo de elasticidad denotamos por 𝐸𝐸. Además, en 
primera instancia, tomaremos los apoyos de la estructura como fijos en las dos direcciones 
del plano. De esta manera, la Estructura de quasi-Sierpinski de 𝑁𝑁 niveles queda definida 
mecánicamente. 

La Estructura de quasi-Sierpinski de 𝑁𝑁 niveles es una estructura hiperestática, esto es, 
dispone de un número de apoyos y barras mayor del necesario para garantizar la estabilidad 
estructural. En una estructura hiperestática, el sistema de cargas y esfuerzos de las barras 
no sólo ha de cumplir la primera ley de Newton, sino también las ecuaciones de 
compatibilidad de deformaciones. En particular, la Estructura de quasi-Sierpinski de 𝑁𝑁 
niveles tiene un grado de hiperestaticidad de 2𝑁𝑁−1 − 1, por lo que ha de cumplir ese número 
de ecuaciones de compatibilidad de deformaciones. Dichas ecuaciones vienen dadas por el 
Principio de los Trabajos Virtuales (PTV). 

El cumplimiento de las ecuaciones del PTV y la satisfacción de los criterios de distribución 
uniforme y misma tensión en las barras lleva a que tengan que permitirse desplazamientos 
verticales en los apoyos de la estructura. Esto puede conseguirse disponiendo apoyos 
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elásticos verticalmente, pero fijos horizontalmente. Operando, llegamos al siguiente 
teorema (19): 

Teorema 2.1. Sea una Estructura de quasi-Sierpinski de 𝑁𝑁 niveles con apoyos fijos 
horizontales que soporta una carga puntual vertical de valor 𝐹𝐹 en su vértice superior tal que 
los nodos de sus apoyos exteriores se desplazan una misma cantidad 𝐷𝐷. Una carga vertical 
uniforme por unidad de área en sus apoyos se genera si y sólo si el desplazamiento vertical 𝛿𝛿𝑖𝑖  
del nodo del apoyo 𝑖𝑖-ésimo es: 

𝛿𝛿𝑖𝑖 = 𝐷𝐷 − 2ΩT �
𝑖𝑖 − 1

2𝑁𝑁 − 1
� , 𝑖𝑖 = 1, … , 2𝑁𝑁−1, 

donde Ω = 𝐹𝐹 𝐿𝐿
tan2(𝛽𝛽) 𝐴𝐴 𝐸𝐸

 y T es la función de Takagi. 

La función de Takagi T es una función fractal (ver Figura 2.3). Por tanto, la distribución de 
carga uniforme se obtiene si y sólo si los apoyos se desplazan verticalmente siguiendo una 
combinación lineal de una función fractal: la función de Takagi. 

 
Figura 2.3. Función de Takagi. 

Una Estructura de quasi-Sierpinski de 𝑁𝑁 niveles cuyos apoyos se desplazan verticalmente 
siguiendo una combinación lineal de la función de Takagi permite obtener una distribución 
uniforme de cargas en la base. Cuanto mayor sea el nivel 𝑁𝑁, mayor será el número de apoyos 
y por tanto más cerca estará la distribución obtenida de la uniforme. Recalcamos que dicha 
esta Estructura es óptima desde un punto de vista de distribución de cargas, al requerir la 
mínima resistencia del soporte, y de peso, al soportar todas sus barras el mismo valor de 
tensión. Por último, indicamos que la distribución uniforme no sólo se obtiene al comprimir 
la estructura, sino también al traccionarla. 
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2.2. Estructura bidimensional con apoyos móviles 

La solución aportada en la Sección 2.1 es óptima bajo dos criterios. Sin embargo, desde un 
punto de vista ingenieril, no es práctica al requerir la obtención y colocación de apoyos 
con características diferentes muy específicas. Por este motivo, vamos a generalizar el 
diseño geométrico y mecánico de la Estructura de quasi-Sierpinski para facilitar su 
construcción y aplicación, a cambio de sacrificar la condición de optimalidad de igualdad 
de tensión de las barras. 

La nueva solución es la Estructura de quasi-Sierpinski genérica (ver Figura 2.4). En esta 
estructura, las barras inclinadas de un nivel 𝑛𝑛, con 𝑛𝑛 = 1,2, … ,𝑁𝑁, forman un ángulo con la 
horizontal que denotamos por 𝛽𝛽𝑛𝑛, pudiendo ser distinto para cada nivel. Por otro lado, el 
producto del área de la sección transversal por el módulo de elasticidad de las barras 
inclinadas de un nivel 𝑛𝑛 (magnitud que denotamos por 𝐽𝐽𝑛𝑛) puede ser cualquiera, mientras 

que para las barras horizontales del nivel 𝑛𝑛 este producto ha de ser 𝐽𝐽 tan(𝛽𝛽1)
2𝑛𝑛−1 tan(𝛽𝛽𝑛𝑛), siendo 𝐽𝐽 el 

valor del producto para la barra horizontal del primer nivel. Por último, los apoyos son fijos 
verticales pero móviles horizontales salvo uno, que también es fijo horizontal para dar 
estabilidad al conjunto. 

 

Figura 2.4. Estructura de quasi-Sierpinski genérica de 𝑁𝑁 niveles, correspondiente a 𝑁𝑁 = 5. 

La Estructura de quasi-Sierpinski genérica de 𝑁𝑁 niveles también es hiperestática. Sin 
embargo, en este caso, la disposición de apoyos móviles horizontales y la selección 
establecida de los productos de área y módulo de elasticidad de las barras horizontales hace 
que se cumplan las ecuaciones de compatibilidad de deformaciones sin necesidad de aplicar 
ningún cambio a la estructura. Por ello, enunciamos el siguiente teorema (20): 

Teorema 2.2. Sea una Estructura de quasi-Sierpinski genérica de 𝑁𝑁 niveles. Si la estructura 
soporta una carga puntual vertical de valor 𝐹𝐹 en su vértice superior, entonces se genera una 
carga vertical uniforme por unidad de área en sus apoyos. 
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Por tanto, la Estructura de quasi-Sierpinski genérica genera una distribución uniforme de 
carga. Además, aunque no se haya tomado como condición de diseño, puede cumplir el 
criterio de optimalidad de igualdad de valor de tensión en sus barras, aunque su definición 
genérica permite adaptarse a otras condiciones de diseño y aun así obtener la distribución 
uniforme de carga. También es interesante notar que esta Estructura permite disponer 
diferentes materiales en sus barras (siempre que se cumpla la regla de los productos de área 
y módulos de elasticidad establecidos), a lo que añadimos la flexibilidad geométrica que 
aportan los diferentes ángulos de las barras inclinadas. Gracias a su carácter innovador, 
hemos patentado esta estructura (“Estructura soporte para la distribución uniforme de 
cargas sobre un segmento recto y prisma soporte para la distribución uniforme de cargas 
sobre una superficie”, nº ES2909950). 

2.3. Estructura tridimensional con apoyos móviles   

La Estructura de la Sección 2.2, bidimensional, tiene un diseño geométrico basado en el 
nacimiento de un nuevo triángulo de menor tamaño en cada nodo de la estructura. Si 
aplicamos este concepto a un diseño tridimensional y generamos una pirámide en cada 
nodo, obtenemos la Pirámide de quasi-Sierpinski genérica de 𝑁𝑁 niveles (ver Figura 2.5). 

 
Figura 2.5. Pirámide de quasi-Sierpinski genérica de 𝑁𝑁 niveles, correspondiente a 𝑁𝑁 = 5. 

En esta estructura, los ángulos de inclinación de las barras inclinadas también pueden ser 
distintos según el nivel. Respecto a la magnitud producto de área de sección transversal y 
módulo de elasticidad, distinguimos los siguientes casos: 

- Barras inclinadas: este producto, que denotamos por 𝐽𝐽𝑛𝑛 para las barras inclinadas del 
nivel 𝑛𝑛, puede ser cualquiera siempre que sea el mismo para todas las barras de un 
mismo nivel. 
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- Barras horizontales dirección X: Sea 𝐽𝐽𝑋𝑋 el valor del producto de las barras horizontales 
dirección X del primer nivel, distinguimos dos casos: 

• Barras del nivel 𝑛𝑛 = 1,2, … ,𝑁𝑁 − 1 y barras exteriores del nivel 𝑛𝑛 = 𝑁𝑁 (pertenecientes 

al perímetro de la base): el producto es 𝐽𝐽𝑋𝑋 tan(𝛽𝛽1)
4𝑛𝑛−1 tan(𝛽𝛽𝑛𝑛). 

• Barras interiores del nivel 𝑛𝑛 = 𝑁𝑁 (no pertenecientes al perímetro de la base): el 

producto es 2 𝐽𝐽𝑋𝑋 tan(𝛽𝛽1)
4𝑛𝑛−1 tan(𝛽𝛽𝑛𝑛). 

- Barras horizontales dirección Y: Sea 𝐽𝐽𝑌𝑌 el valor del producto de las barras horizontales 
dirección Y del primer nivel, distinguimos dos casos: 

• Barras del nivel 𝑛𝑛 = 1,2, … ,𝑁𝑁 − 1 y barras exteriores del nivel 𝑛𝑛 = 𝑁𝑁: el producto es 
𝐽𝐽𝑌𝑌 tan(𝛽𝛽1)

4𝑛𝑛−1 tan(𝛽𝛽𝑛𝑛). 

• Barras interiores del nivel 𝑛𝑛 = 𝑁𝑁: el producto es 2 𝐽𝐽𝑌𝑌 tan(𝛽𝛽1)
4𝑛𝑛−1 tan(𝛽𝛽𝑛𝑛). 

En cuanto a los apoyos, establecemos que todos los apoyos, salvo dos, sean fijos verticales y 
móviles horizontales en las direcciones X e Y. Otro apoyo, que puede ubicarse en cualquier 
nodo del nivel 𝑁𝑁, es fijo vertical y horizontal en las direcciones X e Y. Por último, el último 
apoyo, que puede ubicarse en cualquier nodo del nivel 𝑁𝑁, es fijo vertical, fijo horizontal en 
una dirección no coincidente con la de la recta que une este apoyo y el descrito en el punto 
anterior y móvil horizontal en la dirección perpendicular a esta última. 

Como en la Estructura de quasi-Sierpinski genérica de 𝑁𝑁 niveles, la Pirámide también es 
hiperestática. De nuevo, la disposición de apoyos móviles horizontales y la selección 
establecida de los productos de área y módulo de elasticidad de las barras horizontales en 
ambas direcciones hace que se cumplan las ecuaciones de compatibilidad de deformaciones 
sin necesidad de aplicar ningún cambio a la estructura. Por ello, enunciamos el siguiente 
teorema (20): 

Teorema 2.3. Sea una Pirámide de quasi-Sierpinski genérica de 𝑁𝑁 niveles. Si la estructura 
soporta una carga puntual vertical de valor 𝐹𝐹 en su vértice superior, entonces se genera una 
carga vertical uniforme por unidad de área en sus apoyos. 

Por tanto, la Pirámide de quasi-Sierpinski genérica genera una distribución uniforme de 
carga. De nuevo, puede cumplir el criterio de optimalidad de igualdad de valor de tensión 
en sus barras, permite disponer diferentes materiales (siempre que se cumpla la regla de 
los productos de área y módulos de elasticidad establecidos) y tiene la flexibilidad 
geométrica asociada a los diferentes ángulos de las barras inclinadas. Por último, notemos 
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que en este caso la distribución uniforme es superficial y no lineal. Gracias a su carácter 
innovador, hemos patentado esta estructura (“Estructura soporte para la distribución 
uniforme de cargas sobre una superficie”, nº ES2909433). 

3. PROTECCIÓN FRENTE A LA RADIACIÓN 

Una vez atendida la distribución de fuerzas de impacto, ahora nos centramos en resolver 
otro problema fundamental para los satélites: la radiación. En particular, nos planteamos 
si, dada una masa fija, existe una distribución de dicha masa que maximice la protección 
frente a la radiación. En una primera aproximación, en esta investigación tratamos el caso 
bidimensional. 

Las estructuras protectoras básicas se dividen en porosas y multicapa (21), las cuales 
modelamos mediante un rectángulo de ancho 𝐵𝐵 con porciones de su superficie vaciadas 
mediante círculos o rectángulos de igual anchura y menor altura, respectivamente. En el 
caso de las estructuras porosas, vaciamos el rectángulo mediante 𝑁𝑁 círculos que no solapan 
y que ocupan un área 𝐵𝐵 · 𝑝𝑝. En particular, consideramos tres tipos de estructuras porosas 
(ver Figura 3.1): en rejilla (𝑅𝑅𝑅𝑅), hexagonal (𝑅𝑅𝑅𝑅) y aleatoria (𝑈𝑈𝑅𝑅). En el caso de la multicapa 
(𝑆𝑆), vaciamos el rectángulo mediante rectángulos de ancho 𝐵𝐵 y altura tal que la suma de las 
alturas de todos los rectángulos sea igual a 𝑝𝑝 (ver Figura 3.1). Por ello, la fracción de área 
vaciada en todas las estructuras es siempre 𝑝𝑝. 

 
Figura 3.1. (a) Estructura porosa en rejilla (𝑅𝑅𝑅𝑅), (b) Estructura porosa hexagonal (𝑅𝑅𝑅𝑅), (c) Estructura porosa 

aleatoria (𝑈𝑈𝑈𝑈) y (d) Estructura multicapa (𝑆𝑆). 

Modelamos los rayos o trayectorias de partículas radiactivas por una recta 𝐿𝐿 que interseca 
al rectángulo en un punto de su base a distancia 𝑣𝑣 del vértice inferior izquierdo y en un 
punto del lado opuesto a su base a distancia 𝑤𝑤 del vértice superior izquierdo. Dada una 
recta, la protección que ofrece una distribución viene dada por la cantidad de material 
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sólido que encuentra dicha recta al intersecar al rectángulo. Por tanto, definimos las 
siguientes variables (ver Figura 3.2): 

- Ángulo de incidencia 𝛽𝛽: ángulo formado por la recta que modela al rayo o trayectoria y 
la base del rectángulo. Notemos que cualquier recta viene dada por 𝑣𝑣 y 𝛽𝛽. 

- Distancia sólida 𝐺𝐺𝜏𝜏(𝑣𝑣,𝛽𝛽): suma de las longitudes de los segmentos de la recta que se 
encuentran dentro del rectángulo sobre las zonas no vaciadas, con 𝜏𝜏 = 𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅,𝑈𝑈𝑈𝑈, 𝑆𝑆. 
Esta variable representa con cuánta materia sólida se encuentra el rayo o trayectoria a 
su paso por el rectángulo. 

- Diferencia sólida 𝜔𝜔𝜏𝜏(𝑣𝑣,𝛽𝛽): Para una recta dada, diferencia entre la distancia sólida de la 
estructura 𝜏𝜏 y la distancia sólida de la estructura multicapa 𝑆𝑆, esto es, 𝜔𝜔𝜏𝜏(𝑣𝑣,𝛽𝛽) =
𝐺𝐺𝜏𝜏(𝑣𝑣,𝛽𝛽) − 𝐺𝐺𝑆𝑆(𝑣𝑣,𝛽𝛽), con 𝜏𝜏 = 𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅,𝑈𝑈𝑈𝑈. Esta variable representa cuán superior es la 
protección de la estructura 𝜏𝜏 con respecto a la multicapa (tomada como referencia ya que 
el escudo actual, el Whipple, es multicapa).  

Dado que los rayos o trayectorias radiactivas pueden tener cualquier dirección, realizamos 
un estudio estadístico de la variable 𝐺𝐺𝜏𝜏(𝑣𝑣,𝛽𝛽) para cada distribución para así determinar cuál 
es el nivel de protección de cada una. Para ello, para cada distribución, generamos 𝑍𝑍 rectas 
diferentes para obtener una muestra de 𝛽𝛽 y 𝐺𝐺𝜏𝜏 (en el caso de la estructura 𝑈𝑈𝑈𝑈, repetimos 
este proceso también con 𝑀𝑀 disposiciones diferentes de círculos, al ser aleatoria). Dada una 
muestra, consideramos la función de distribución 𝐹𝐹𝐺𝐺𝜏𝜏   de 𝐺𝐺𝜏𝜏. En el caso de la estructura 𝑆𝑆, 
obtenemos 𝐹𝐹𝐺𝐺𝑆𝑆  teóricamente, pero para las estructuras restantes el estudio es 
excesivamente complejo a nivel teórico, por lo que obtenemos el estimador 𝐹𝐹𝐺𝐺𝜏𝜏

∗  de la función 

de distribución (la función de distribución empírica). 

Los resultados obtenidos muestran que, según aumenta el número de círculos 𝑁𝑁 de una 
distribución (y, por tanto, disminuye el tamaño de estos ya que la fracción 𝑝𝑝 es constante), 
más cerca está la distribución empírica 𝐹𝐹𝐺𝐺𝜏𝜏

∗  de las tres distribuciones porosas de la 

distribución 𝐹𝐹𝐺𝐺𝑆𝑆  de la multicapa (22). Es decir, cuando 𝑁𝑁 tiende a infinito, el nivel de 
protección de las estructuras porosas converge al de la multicapa en distribución de 
probabilidad. Si realizamos un análisis más exhaustivo, encontramos que, para cualquier 
rayo o trayectoria, exceptuando a un conjunto pequeño para las estructuras 𝑅𝑅𝑅𝑅 y 𝑅𝑅𝑅𝑅, 
cuando 𝑁𝑁 tiende a infinito la distancia sólida de cualquier distribución converge a la 
multicapa (22). Esto significa que, para un número 𝑁𝑁 suficientemente grande, la protección 
de todas las estructuras es la misma, probabilísticamente e incluso para cualquier rayo o 
trayectoria (exceptuando a dicho conjunto “pequeño” para las estructuras 𝑅𝑅𝑅𝑅 y 𝑅𝑅𝑅𝑅).  

En la Figura 3.2 mostramos la evolución de la diferencia sólida 𝜔𝜔𝑅𝑅𝑅𝑅(𝑣𝑣,𝛽𝛽)  según 𝑁𝑁 en 
función del ángulo 𝛽𝛽, en radianes. Apreciamos que, según aumenta 𝑁𝑁, las diferencias se 
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concentran progresivamente en torno a la recta que simboliza la diferencia nula, salvo para 
un conjunto de ángulos 𝛽𝛽. Demostramos que estos ángulos son aquellos para los cuales la 
tangente es un número racional, y por tanto el conjunto es de medida nula (22). Además, y 
como se muestra en la Figura, dicho conjunto tiene forma fractal, ya que muestra patrones 
repetidos a diferentes escalas (en la Figura, a mayor intensidad del rojo, mayor cercanía al 
fractal teórico correspondiente a 𝑁𝑁 tendiendo a infinito). Sin embargo, este conjunto de 
medida nula desaparece cuando evaluamos la estructura aleatoria 𝑈𝑈𝑈𝑈 (ver Figura 3.3). Esto 
se debe a que no hay una colocación regular de los círculos y por tanto la convergencia de 
la diferencia sólida al valor cero se da independientemente de si la tangente del ángulo es 
racional o irracional (22).  

 

Figura 3.2: Diferencia sólida 𝜔𝜔𝑅𝑅𝑅𝑅(𝑣𝑣,𝛽𝛽) en función de 𝛽𝛽 para diferentes valores de 𝑁𝑁 para la estructura 𝑅𝑅𝑅𝑅 con 
𝐵𝐵 = 4 y 𝑝𝑝 = 0,1. 

 

Figura 3.3: Diferencia sólida 𝜔𝜔𝑈𝑈𝑈𝑈(𝑣𝑣,𝛽𝛽) en función de 𝛽𝛽 para diferentes valores de 𝑁𝑁 para la estructura 𝑈𝑈𝑈𝑈 con 
𝐵𝐵 = 1 y 𝑝𝑝 = 0,5. 
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La equivalencia del material sólido atravesado por un rayo o trayectoria arbitraria 
independientemente de su distribución tiene una clara utilidad en el blindaje nuclear. Por 
una parte, proporciona validez al cálculo de la porosidad 𝑝𝑝 de un material mediante el 
coeficiente de atenuación lineal de la radiación (23). Por otra, justifica el uso de materiales 
porosos con fines de blindaje, lo que es especialmente relevante ya que el hormigón es un 
material poroso barato y fácil de usar (24, 25). Si aplicamos estos resultados a la protección 
de los satélites, tenemos que, dada una masa fija, ha de elegirse la estructura más resistente 
a los impactos, ya que la radiación atraviesa la misma cantidad de materia. También es vital 
señalar el peligro que supone la singularidad fractal de las estructuras regulares 𝑅𝑅𝑅𝑅 y 𝑅𝑅𝑅𝑅, 
ya que, si se sigue trabajando en una instalación nuclear con blindaje de estructura porosa 
regular, se producirá una irradiación fatal.  

Por último, explicamos los fractales encontrados en los patrones de difracción de rayos X de 
materiales amorfos con granos finos de material monocristalino (26, 27). Los granos no 
tienen una orientación fija, pero la orientación de los rayos X sí es constante. Esto es 
equivalente a mantener la estructura regular de un grano con orientación fija e irradiarlo 
desde todas las direcciones, lo cual es el método aplicado en nuestra investigación 

4. DISIPACIÓN DEL CALOR 

En los procesos de frenado de partículas propios de la protección frente al impacto y la 
radiación se produce calor que es necesario disipar. Por este motivo, esta investigación se 
centra ahora en optimizar la forma de una interfaz altamente conductora para maximizar el 
drenaje de calor. 

En particular, el problema consiste en encontrar la forma óptima de una interfaz que divide 
un dominio en dos subdominios, uno de los cuales contiene una fuente de calor, para 
minimizar la temperatura máxima en dicho subdominio. De entre todas las posibles formas 
que puede tomar esta interfaz, nos centramos en un conjunto de mixturas asimétricas de 
prefractales de Koch (ver Figura 4.1). El fractal de Koch en el que se basan estas mixturas se 
forma mediante un proceso iterativo que consiste en dividir un segmento en tres partes 
iguales y sustituir la parte central por dos segmentos de igual longitud que las partes 
restantes, de manera que cada nuevo segmento forme un ángulo de 60° con la dirección del 
segmento original (ver Figura 4.1); es decir, se “hace crecer” una parte del segmento. Por su 
parte, la mixtura asimétrica de Koch permite realizar este proceso con ángulos diferentes, 
no necesariamente iguales a 60°, en cada uno de los segmentos. En esta investigación 
utilizamos dichas mixturas prefractales ya que 1) están formadas por segmentos, lo que 
facilita su fabricación, y 2) pueden formar diferentes estructuras en sus distintas partes, lo 
que permite que la interfaz se adapte a las condiciones del problema. 
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Figura 4.1. (a) Fractal simétrico de Koch y (b) ejemplo de mixtura asimétrica de un prefractal de Koch. 

Como vemos, estos prefractales se construyen iterativamente, por lo que la solución óptima 
se puede generar mediante un proceso iterativo. Dada la interfaz correspondiente a una 
determinada iteración, el proceso consiste en elegir un segmento de esta y hacer crecer su 
parte central una cierta cantidad. El segmento elegido en cada iteración es el segmento con 
el mayor flujo de calor, ya que este es el que presenta la mayor diferencia de temperaturas 
entre los dos subdominios, y el objetivo es obtener una distribución de temperaturas lo más 
uniforme posible. Por otra parte, la cantidad que hacemos crecer la parte central del 
segmento es aquella que minimiza la temperatura en el subdominio con la fuente de calor. 
Esta cantidad puede ser cero, es decir, lo mejor puede ser no hacer crecer ese segmento, con 
lo cual se descartaría para siguientes iteraciones. Este proceso iterativo para cuando la 
interfaz no presenta ningún segmento para crecer, ya que esto significa que ningún 
crecimiento mejora la interfaz conseguida, asumiendo por tanto que esta es la óptima. 

 

Figura 4.2. Crecimiento iterativo (a)-(f) del prefractal de la mixtura asimétrica de Koch, mapas de calor 
correspondientes y valor de la temperatura máxima 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  en grados Celsius. 

(a) (b) 
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Mediante este proceso se generan interfaces que se aproximan iterativamente a la fuente de 
calor (ver Figura 4.2). Esto se debe a que los segmentos que crecen primero son los de mayor 
flujo de calor, y estos son los más cercanos a la fuente, y lo óptimo es que crezcan lo máximo 
posible hacia ella, ya que la interfaz es altamente conductora. Notemos que con este proceso 
conseguimos una reducción del 50% de la temperatura máxima 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 en el dominio (28).  

Estos resultados son lógicos desde un punto de vista físico, ya que la interfaz es más 
conductora que el resto del dominio, por lo que constituye un camino más eficiente para 
disipar el calor. Por ello, cuanto más cerca esté la interfaz de los puntos de máxima 
temperatura del dominio, más eficientemente se disipa el calor. Por otra parte, este 
crecimiento ha de estar equilibrado con el aumento de longitud de la interfaz, ya que un 
aumento de la longitud implica un aumento de resistencia al flujo de calor a través de ella. 
Por ello, no es efectivo hacer crecer la interfaz en todos los puntos, sino que es más 
conveniente hacerla crecer únicamente en las partes suficientemente cercanas a la fuente 
de calor para compensar el aumento de resistencia por la longitud. 

Por otra parte, la posición de la fuente de calor afecta a la forma de la interfaz óptima. Si la 
fuente está centrada, la interfaz sólo hace crecer una punta y el proceso termina, ya que 
ningún crecimiento de ningún segmento la hace acercarse más a la fuente (ver Figura 4.3a). 
Por otro lado, si la fuente está en un lado, la interfaz se desarrolla hacia ella, generando 
incluso puntas secundarias (28) (ver Figura 4.3b). 

 

 

 

 

 

Figura 4.3. Interfaz óptima y mapa de calor dada una fuente de calor (a) centrada y (b) en un lado. El centro de 
la fuente de calor se representa mediante un punto negro. 

La conductividad de la interfaz es otro factor para considerar. Independientemente de la 
conductividad, el crecimiento de una interfaz implica un aumento de resistencia dado. Sin 
embargo, a mayor conductividad, mayor es el drenaje de calor. Por tanto, a mayor 
conductividad, menor es la penalización relativa del aumento de resistencia al flujo de calor 
con respecto al drenaje, y, por tanto, más crece la interfaz (28). 

(a) (b) 
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Como conclusiones de esta investigación, las interfaces basadas en prefractales de mixturas 
asimétricas de Koch permiten disipar el calor de manera efectiva, consiguiendo una 
reducción de temperatura máxima de hasta el 50%. Esto se debe a que estas mixturas 
permiten un crecimiento local, desarrollándose sólo en las zonas de mayor temperatura. 
Esta reflexión tiene otra lectura: no todos los fractales son apropiados para dar forma a estas 
interfaces para disipar calor. En particular, aquellos fractales que presenten formas 
intrincadas en zonas de baja temperatura tendrán una alta resistencia al flujo de calor sin 
que ello implique un alto efecto drenador. 

5. DEFORMACIONES EN ESTRUCTURAS ARBÓREAS 

En la Sección 2 hemos visto cómo las estructuras fractales como la de quasi-Sierpinski son 
útiles para la distribución de fuerzas. Notemos que, si le damos la vuelta a dicha estructura, 
obtenemos una estructura que se asemeja a la de un árbol, lo que da origen al estudio de 
dos problemas, uno biológico y otro arquitectónico. 

El problema biológico surge de la propia morfología de la estructura y es de especial interés 
dada la importancia de los árboles en nuestro entorno por razones ecológicas y económicas. 
Los árboles necesitan ser analizados desde un punto de vista mecánico para determinar 
cómo se deforman y así determinar la forma del árbol cuando alcanza el equilibrio tras ser 
cargado en su copa (peso de la lluvia, nieve, hojas, etc.). En particular, el estudio de la copa 
y sus deformaciones tras carga es de gran importancia para varios procesos relacionados 
con la humedad y temperatura en la copa (29, 30), la lluvia (31, 32) y simulaciones de 
bosques (33) para la dispersión de semillas, polen y fuegos. Por otra parte, el problema 
arquitectónico aparece al comprobar que las estructuras arbóreas son ampliamente 
utilizadas para el soporte de cargas, por lo que es necesario conocer sus deformaciones tras 
carga para determinar sus correctas condiciones de servicio. 

En esta investigación utilizamos como modelo de análisis el árbol binario bidimensional 
(ver Figura 5.1). Esta estructura se compone de barras que se bifurcan progresivamente; en 
particular, un árbol binario de 𝑃𝑃 niveles es un árbol en el que todos los caminos que unen la 
base con la copa incluyen 𝑃𝑃 bifurcaciones, generándose un nuevo nivel tras cada 
bifurcación. Las estructuras de los árboles son de nodos rígidos, por lo que habrá que 
considerar para el cálculo esfuerzo axial (dirección de la barra), cortante (perpendicular a 
la dirección de la barra) y momento flector (perpendicular al plano del árbol). La reducción 
de longitud de razón 1/2 de nivel a nivel garantiza que los nodos de la copa estén a la misma 
distancia, por lo que consideramos que la carga aplicada en su copa se distribuye 
uniformemente entre todos ellos. 
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Figura 5.1. Estructura de árbol binario de 𝑃𝑃 niveles, correspondiente a 𝑃𝑃 = 3. 

En esta estructura, denotamos por 𝐿𝐿 a la longitud de las barras del primer nivel y por 𝜃𝜃 al 
ángulo de inclinación. Además, denotamos por 𝐼𝐼, 𝐴𝐴 y 𝐴𝐴′ a la inercia, área de sección 
transversal y área a cortante, respectivamente, de las barras del primer nivel, y por 𝑎𝑎, 𝑢𝑢 y 𝑣𝑣 
los factores de reducción de dichas magnitudes, respectivamente, de un nivel al siguiente 
(pensemos que las ramas de los árboles se estrechan en su camino a la copa). Finalmente, 
denotamos por 𝐸𝐸 y 𝐺𝐺 a los módulos de Young y elasticidad transversal, respectivamente, del 
material de las barras. 

El objetivo es calcular la deformación de la estructura de árbol binario definida con los 
parámetros geométricos y mecánicos anteriormente mencionados. Para ello, calculamos los 
desplazamientos verticales y horizontales por unidad de carga que sufren los nodos de la 
estructura tras aplicar en cada nodo de la copa una carga vertical hacia debajo de valor 1/2𝑃𝑃. 

 

Figura 5.2. Desplazamientos verticales 𝑉𝑉𝛿𝛿𝑖𝑖∗,𝑛𝑛∗
𝑅𝑅 por unidad de carga según la posición 𝑧𝑧(𝑖𝑖∗,𝑛𝑛∗),  del nodo en un 

árbol binario. El eje vertical se muestra invertido para ofrecer una mejor representación de la forma final de la 
estructura. Los parámetros del árbol son 𝜃𝜃 = 𝜋𝜋/3, 𝐸𝐸 = 1010 𝑁𝑁/𝑚𝑚2, 𝐺𝐺 = 5 · 108 𝑁𝑁/𝑚𝑚2, 𝐿𝐿 = 0,5 𝑚𝑚, 𝐼𝐼 = 3,1416 ·

10−4 𝑚𝑚4, 𝐴𝐴 = 3,1416 · 10−2 𝑚𝑚2, 𝐴𝐴′ = 2,8274 · 10−2 𝑚𝑚2, 𝑎𝑎 = 9, 𝑢𝑢 = 3, 𝑣𝑣 = 3. 
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Los desplazamientos verticales, que denotamos por 𝑉𝑉𝛿𝛿𝑖𝑖∗,𝑛𝑛∗
𝑅𝑅 , de cada nodo 𝑛𝑛∗ de algunos 

niveles 𝑖𝑖∗ se muestran, en función de su coordenada horizontal 𝑧𝑧(𝑖𝑖∗,𝑛𝑛∗), en la Figura 5.2 
(como referencia, los nodos primero y último de un nivel infinito 𝑖𝑖∗ → ∞ tienen coordenada 
0 y 1 respectivamente). Lo que observamos en dicha Figura es que los desplazamientos 
siguen combinaciones lineales de prefractales de la función de Takagi, y a mayor nivel, 
mayor cercanía al fractal de Takagi. De hecho, en un nivel teórico infinito, los nodos de la 
copa o bien se desplazan verticalmente siguiendo una combinación lineal de la función de 
Takagi si 1 < 𝑎𝑎 < 16, 1 < 𝑢𝑢 < 4 y 1 < 𝑣𝑣 < 4, o bien se hacen infinitos para valores de los 
parámetros mecánicos fuera de esos intervalos (34). 

Los desplazamientos horizontales, que denotamos por 𝐻𝐻𝛿𝛿𝑖𝑖∗,𝑛𝑛∗
𝑅𝑅 , de cada nodo 𝑛𝑛∗ de algunos 

niveles 𝑖𝑖∗ se muestran, en función de su coordenada horizontal 𝑧𝑧′(𝑖𝑖∗,𝑛𝑛∗), en la Figura 5.3 
(como referencia, los nodos primero y último de cada nivel tienen coordenada 0 y 1 
respectivamente). Los desplazamientos horizontales son resultado de la combinación de 
tres prefractales de funciones inversas de 𝛽𝛽-Cantor (30), una para el momento flector, otra 
para el esfuerzo axial y otra para el cortante, donde el parámetro 𝛽𝛽 depende 
respectivamente de 𝑎𝑎, 𝑢𝑢 y 𝑣𝑣.  De hecho, en un nivel teórico infinito, los nodos de la copa o 
bien se desplazan horizontalmente siguiendo una combinación lineal de tres inversas de 
funciones 𝛽𝛽-Cantor si 1 < 𝑎𝑎 < 16, 1 < 𝑢𝑢 < 4 y 1 < 𝑣𝑣 < 4, o bien se hacen infinitos para 
valores de los parámetros mecánicos fuera de esos intervalos (34). 

 

Figura 5.3. Desplazamientos horizontales 𝐻𝐻𝛿𝛿𝑖𝑖∗,𝑛𝑛∗
𝑅𝑅 por unidad de carga según la posición 𝑧𝑧′(𝑖𝑖∗,𝑛𝑛∗),  del nodo en 

un árbol binario. Un valor positivo indica hacia la izquierda si 𝑧𝑧′(𝑖𝑖∗,𝑛𝑛∗) < 1/2 y hacia la derecha si 𝑧𝑧′(𝑖𝑖∗,𝑛𝑛∗) >
1/2. Los parámetros del árbol son 𝜃𝜃 = 𝜋𝜋/3, 𝐸𝐸 = 1010 𝑁𝑁/𝑚𝑚2, 𝐺𝐺 = 5 · 108 𝑁𝑁/𝑚𝑚2, 𝐿𝐿 = 0,5 𝑚𝑚, 𝐼𝐼 = 3,1416 ·

10−4 𝑚𝑚4, 𝐴𝐴 = 3,1416 · 10−2 𝑚𝑚2, 𝐴𝐴′ = 2,8274 · 10−2 𝑚𝑚2, 𝑎𝑎 = 9, 𝑢𝑢 = 3, 𝑣𝑣 = 3. 
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La combinación de ambos desplazamientos en cada nodo, vertical y horizontal, genera la 
forma deformada que se muestra en la Figura 5.4. Por tanto, la forma deformada tras carga 
de un árbol viene dada por la combinación de los fractales Takagi y 𝛽𝛽-Cantor, lo que indica 
una conexión entre ambos. De hecho, comprobamos que sus dimensiones fractales, 𝐷𝐷Ψ y 𝐷𝐷𝐶𝐶 
para Takagi y el 𝛽𝛽-Cantor correspondiente a los momentos flectores respectivamente, se 
relacionan mediante la siguiente expresión (34): 

𝐷𝐷Ψ +
1
𝐷𝐷𝐶𝐶

= 2 

 
Figura 5.4. (a) Árbol binario sin deformar (línea discontinua negra) y deformado (línea continua roja), (b) 

Desplazamientos verticales 𝑉𝑉𝛿𝛿𝑅𝑅 de los nodos del último nivel en magenta, (c) Desplazamientos horizontales 
𝐻𝐻𝛿𝛿𝑅𝑅  de los nodos del último nivel en azul y (d) Curva de Takagi y combinación lineal de inversas de funciones 

𝛽𝛽-Cantor, mostrando los desplazamientos horizontales 𝐻𝐻𝛿𝛿𝑅𝑅  en vertical. 

Como conclusiones, es interesante notar que los fractales que rigen los desplazamientos del 
árbol dependen de sus parámetros mecánicos. Esto implica que la forma deformada puede 
cambiar drásticamente sin cambiar su forma original (árbol binario), sino simplemente 
alterando sus características mecánicas. En particular, el parámetro 𝑎𝑎, que representa la 
reducción de la inercia de las ramas de un nivel al siguiente, es el que controla tanto los 
desplazamientos verticales (como parámetro de la curva de Takagi) como los horizontales 
(como parámetro de una de las funciones inversas de 𝛽𝛽-Cantor). 

6. GENERACIÓN DE SUPERFICIES PREFRACTALES 

En las Secciones 2 y 5 hemos trabajado con la función de Takagi. Dicha función se obtiene 
como una suma infinita de ondas triangulares de amplitudes decrecientes y frecuencias 
crecientes. Motivados por la idea de extender este método de construcción de fractales, 
utilizamos funciones diferentes a la onda triangular, obteniendo diferentes gráficas de 
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aspecto fractal. Yendo un paso más allá, pasamos de funciones de ℝ en ℝ a funciones de ℝ2 
en ℝ, con lo que conseguimos superficies con aspecto fractal que modelan elementos 
arquitectónicos y decorativos. Finalmente, añadimos factores aleatorios a este método, 
obteniendo superficies aleatorias de aspecto fractal que simulan montañas, cráteres o 
dunas. Por tanto, el método presentado en esta sección es un método de generación de 
superficies prefractales que dispone de una amplia variedad de parámetros, con lo que el 
diseñador puede modelarla a su gusto. Por tanto, este método es de aplicación directa en 
simuladores, videojuegos o el metaverso. 

Para describir este método, necesitamos las siguientes definiciones: 

- Región de definición del prefractal: denotada por Φ, es un polígono regular de 𝑘𝑘 lados en 
el que se define la superficie prefractal. 

- Sucesión de conjunto de sitios: denotada por {Ω𝑛𝑛}𝑛𝑛=1𝑁𝑁∈ℕ, es una sucesión de conjuntos, 
denotados por Ω𝑛𝑛, de puntos contenidos en Φ, denominados sitios. Cada conjunto de 
sitios tiene 𝑘𝑘𝑛𝑛−1 sitios. 

- Función de teselación: denotada por 𝜆𝜆𝑛𝑛∗ , es la función que a cada punto (𝑥𝑥,𝑦𝑦) de Φ le 
asocia el sitio del conjunto Ω𝑛𝑛 más cercano según una métrica basada en una norma 𝑝𝑝. 
Notemos que, para cada 𝑛𝑛, 𝜆𝜆𝑛𝑛∗  genera en Φ una teselación con 𝑘𝑘𝑛𝑛−1 teselas, una por cada 
sitio del conjunto Ω𝑛𝑛. 

- Función semilla: denotada por 𝑓𝑓, es una función que asocia a cada punto (𝑥𝑥,𝑦𝑦) de Φ un 
cierto valor, tomando 𝜆𝜆𝑛𝑛∗  como parámetro. Así, dos puntos pertenecientes a una misma 
tesela tomarán la función 𝑓𝑓 con el mismo parámetro, mientras que dos puntos 
pertenecientes a diferentes teselas tomarán dicha función con dos parámetros distintos. 

- Superficie prefractal de orden 𝑁𝑁: Denotada por 𝑆𝑆𝑁𝑁, devuelve para cada punto (𝑥𝑥,𝑦𝑦) de Φ 
la suma de la función 𝑓𝑓 evaluada en dicho punto con los sucesivos parámetros 
𝜆𝜆1∗ ,𝜆𝜆2∗ , … , 𝜆𝜆𝑁𝑁∗ , y multiplicada por un peso. Específicamente, viene dada por 𝑆𝑆𝑁𝑁(𝑥𝑥,𝑦𝑦) =
∑ 𝜃𝜃𝑛𝑛−1𝑓𝑓�𝑥𝑥,𝑦𝑦; 𝜆𝜆𝑛𝑛∗ (𝑥𝑥,𝑦𝑦)�𝑁𝑁
𝑛𝑛=1 , donde 𝜃𝜃 > 0 es el peso. 

Los conjuntos de sitios se pueden determinar de infinidad de maneras. En este trabajo 
mostraremos, como ejemplo, conjuntos de sitios denotados por Ω𝑛𝑛𝑇𝑇  generados de la 
siguiente manera: el primer conjunto, Ω1𝑇𝑇 , contiene únicamente como sitio al punto (0,0). El 
segundo conjunto, Ω2𝑇𝑇 , contiene 𝑘𝑘 sitios que se encuentran todos a distancia 𝐿𝐿 del sitio (0,0) 
del conjunto anterior Ω1𝑇𝑇 , y el ángulo que forman la horizontal y la recta que une cada sitio 
con el (0,0) se determina aleatoriamente. En general, el conjunto Ω𝑛𝑛𝑇𝑇  se obtiene a través de 
los sitios del conjunto Ω𝑛𝑛−1𝑇𝑇 , generando desde cada uno de sus sitios 𝑘𝑘 nuevos sitios a 
distancia 𝐿𝐿 · 𝑟𝑟𝑛𝑛−2 y con ángulo aleatorio. En la Figura 6.1 se muestran los sitios de conjuntos 
Ω1𝑇𝑇 ,Ω2𝑇𝑇 , … ,Ω6𝑇𝑇 . 
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Figura 6.1. Sitios de los conjuntos Ω1𝑇𝑇 ,Ω2𝑇𝑇 , … ,Ω6𝑇𝑇 generados tomando 𝑘𝑘 = 4, 𝐿𝐿 = 0,25 y 𝑟𝑟 = 0,5. 

De igual manera, dada una sucesión de conjuntos de sitios, se pueden formar tantas 
teselaciones como normas 𝑝𝑝 existentes. A modo de ejemplo, en la Figura 6.2 mostramos las 
teselaciones correspondientes a cada conjunto Ω1𝑇𝑇 ,Ω2𝑇𝑇 , … ,Ω6𝑇𝑇  anterior utilizando las 
funciones de teselación 𝜆𝜆1∗ ,𝜆𝜆2∗ , … , 𝜆𝜆6∗ , con la norma 2. 

 

Figura 6.2. Teselaciones correspondientes a cada conjunto Ω1𝑇𝑇 ,Ω2𝑇𝑇 , … ,Ω6𝑇𝑇 mostrado en la Figura 6.1 utilizando 
las funciones de teselación 𝜆𝜆1∗ , 𝜆𝜆2∗ , … , 𝜆𝜆6∗ , con la norma 2. 

Una vez obtenidas las sucesivas teselaciones, podemos aplicar sobre cada una de ellas una 
infinidad de funciones semilla. A modo de ejemplo, en la Figura 6.3 mostramos la aplicación 
de la función piramidal de cuatro caras sobre cada una de las teselaciones presentadas en 
la Figura 6.2. Esta función genera una pirámide en cada tesela cuyo vértice superior se sitúa 
en el sitio correspondiente a dicha tesela. 
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Figura 6.3. Función piramidal de cuatro caras aplicada en cada una de las teselaciones mostradas en la 
Figura 6.2. 

Como vemos en la Figura 6.3, se han generado tantas superficies como teselaciones (y, por 
tanto, como conjuntos de sitios), cuyo número es 𝑁𝑁. Por tanto, la superficie prefractal final 
es el resultado de sumar las 𝑁𝑁 superficies ponderadas por pesos. En resumen, el método se 
integra de los siguientes pasos: 

1. Se eligen sucesivos conjuntos de sitios Ω1,Ω2, … ,Ω𝑁𝑁  en Φ. 

2. Se genera una teselación por cada conjunto de sitios según la función de teselación 𝜆𝜆𝑛𝑛∗  
con la métrica basada en la norma 𝑝𝑝 elegida. 

3. La función semilla 𝑓𝑓 se calcula en las teselas de cada teselación usando como parámetro 
la función 𝜆𝜆𝑛𝑛∗ , que es diferente para cada tesela. 

4. Finalmente, la superficie prefractal se obtiene sumando cada función semilla de 𝑛𝑛 = 1 a 
𝑛𝑛 = 𝑁𝑁 ponderada cada una por el peso 𝜃𝜃𝑛𝑛−1. 

Con este método se pueden generar superficies realistas que simulan terrenos naturales 
como terrenos con cráteres (ver Figura 6.4a), terrenos montañosos con fallas (ver Figura 
6.4b) o cañones (ver Figura 6.4c), entre otros. Estas superficies se han obtenido utilizando 
conjuntos de sitios determinados por alguna componente aleatoria. Sin embargo, se pueden 
utilizar también conjuntos de sitios deterministas, con lo que el método genera elementos 
arquitectónicos o decorativos (ver Figura 6.4d) (35). 
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Figura 6.4. Superficies prefractales que simulan (a) terrenos con cráteres, (b) terrenos montañosos con fallas, 
(c) cañones y (d) elementos decorativos. 

Como conclusiones, destacamos que el método presentado permite generar superficies 
complejas y realistas a partir de funciones semillas sencillas. Además, este método otorga a 
los diseñadores una gran capacidad de control gracias a los numerosos parámetros de los 
que dispone, siendo capaces de crear superficies deterministas tales como formas 
arquitectónicas o superficies aleatorias tales como cráteres, montañas y cañones. 

7. FUNCIONES FRACTALES 

En la Sección 6 hemos visto cómo la extensión del método de construcción de la curva de 
Takagi a través de una suma infinita daba lugar a superficies con aspecto fractal. En esta 
Sección vamos a demostrar que esta extensión, con funciones de ℝ en ℝ como primera 
aproximación, genera funciones efectivamente fractales. Para ello, vamos a utilizar el 
operador contractivo de Read-Bajraktarevic (operador RB, en adelante). 

El operador RB, que denotamos por Ξ, es un operador que actúa sobre funciones acotadas 
para devolver funciones también acotadas. En particular, este operador es contractivo, esto 
es, para cualesquiera dos funciones 𝑓𝑓 y 𝑔𝑔, la distancia entre Ξ𝑓𝑓 y Ξ𝑔𝑔 es menor o igual que entre 
𝑓𝑓 y 𝑔𝑔; esto significa que el operador “contrae” el eje de ordenadas de la gráfica de la función 
sobre la que se aplica. Toda función 𝑓𝑓 que sea igual al resultado de aplicar dicho operador 
sobre ella misma (es decir, es un punto fijo, 𝑓𝑓 = Ξ𝑓𝑓), es una función fractal (36, 37).  

(a) (b) 

(c) (d) 
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Por otra parte, sea el conjunto 𝑋𝑋 cualquiera, definimos la clase 𝐺𝐺 de funciones como el 
conjunto de funciones 𝑔𝑔 de 𝑋𝑋 a ℝ cuya expresión viene dada por 

𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜃𝜃) = �𝜃𝜃𝑛𝑛 𝑡𝑡 �
|𝑥𝑥 − 𝜆𝜆𝑛𝑛(𝑥𝑥;𝛼𝛼)|

𝛾𝛾𝑛𝑛(𝑥𝑥) �
∞

𝑛𝑛=0

, 

donde 𝛼𝛼 y 𝜃𝜃 son parámetros que detallaremos a continuación, así como el resto de los 
elementos que integran la expresión. Por simplicidad, asumimos 𝑋𝑋 = [0,1). 

En primer lugar, consideramos un conjunto de 𝑀𝑀 funciones, que denotamos por 𝑢𝑢𝑚𝑚, que 
dividen el intervalo 𝑋𝑋 en 𝑀𝑀 subintervalos que no intersecan de amplitud 𝑎𝑎𝑚𝑚, con 𝑚𝑚 =
1,2, … ,𝑀𝑀, tales que ∑ 𝑎𝑎𝑚𝑚𝑀𝑀

𝑛𝑛=1 = 1. Es decir, las funciones 𝑢𝑢𝑚𝑚 realizan una primera partición 
(correspondiente a 𝑛𝑛 = 1), de 𝑀𝑀 elementos, del intervalo 𝑋𝑋, y si aplicamos de nuevo cada 
función 𝑢𝑢𝑚𝑚 sobre cada subintervalo, generaremos una segunda partición (correspondiente 
a 𝑛𝑛 = 2), de 𝑀𝑀2 elementos. En general, si aplicamos cada función 𝑢𝑢𝑚𝑚 sobre cada 
subintervalo de la 𝑛𝑛 − 1-ésima partición, generaremos la 𝑛𝑛-ésima partición,  de 𝑀𝑀𝑛𝑛 
elementos, del intervalo 𝑋𝑋. Así pues, dado un valor 𝑥𝑥 ∈ 𝑋𝑋, éste pertenecerá a sucesivos 
subintervalos de las sucesivas particiones. En particular, consideraremos que la partición 
cero es el propio intervalo 𝑋𝑋. 

Dada la 𝑛𝑛-ésima partición de 𝑋𝑋, denotamos por 𝜆𝜆𝑛𝑛(𝑥𝑥;𝛼𝛼) a la función que devuelve la media 
ponderada por el parámetro 𝛼𝛼 de los dos límites del subintervalo al que pertenece 𝑥𝑥; esto 
es, si 𝛼𝛼 = 0 entonces 𝜆𝜆𝑛𝑛(𝑥𝑥;𝛼𝛼) devuelve el límite inferior, si 𝛼𝛼 = 1, 𝜆𝜆𝑛𝑛(𝑥𝑥;𝛼𝛼) devuelve el límite 
superior y si 𝛼𝛼 = 1/2 entonces 𝜆𝜆𝑛𝑛(𝑥𝑥;𝛼𝛼) devuelve la media aritmética. Por otra parte, 
denotamos por 𝛾𝛾𝑛𝑛(𝑥𝑥;𝛼𝛼) a la función que devuelve el producto de las amplitudes de los 
sucesivos subintervalos a los que pertenece 𝑥𝑥, desde la primera partición hasta la 𝑛𝑛-ésima. 
Por último, denotamos por 𝑡𝑡 a una función acotada cualquiera de 𝑋𝑋 a ℝ, y por 𝜃𝜃 a un 
parámetro perteneciente al intervalo [0,1). 

Utilizando el operador RB, demostramos que toda función 𝑔𝑔 así construida es un punto fijo 
del operador, por lo que es una función fractal (20). Conceptualmente, lo que hace la función 
𝑔𝑔 es lo siguiente: dado un 𝑛𝑛 = 0,1,2 …, aplica la función acotada 𝑡𝑡 sobre una traslación y 
escalado del punto 𝑥𝑥 en el propio eje 𝑋𝑋 en función del subintervalo de la 𝑛𝑛-ésima partición 
al que pertenece, y multiplica el valor de dicha función por 𝜃𝜃𝑛𝑛 para provocar una 
contracción en el eje Y. De esta forma se consigue obtener la propiedad fractal de invariancia 
por cambio de escala.  

A modo de ejemplo, en la Figura 7.1 mostramos algunas funciones fractales de la clase 𝐺𝐺. 
Notemos que la clase 𝐺𝐺 es una clase que extiende la curva de Takagi (ver Figura 7.1a) para 
contemplar funciones fractales muy diversas. 
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Figura 7.1. Ejemplos de funciones fractales de la clase 𝐺𝐺. En particular, (a) función obtenida con {𝑎𝑎1, 𝑎𝑎2} =

{1/2, 1/2}, 𝛼𝛼 = 1/2, 𝜃𝜃 = 1/2 y 𝑡𝑡(𝑥𝑥) = 1/2 − 𝑥𝑥, (b) función obtenida con {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4} = {0,1, 0,4, 0,2, 0,3}, 
𝛼𝛼 = 1/2, 𝜃𝜃 = 0,8 y 𝑡𝑡(𝑥𝑥) = exp(−𝑥𝑥), (c), función obtenida con {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3} = {0,5, 0,35, 0,15}, 𝛼𝛼 = 1/2, 𝜃𝜃 = 0,7 y 

𝑡𝑡(𝑥𝑥) = 𝑥𝑥𝑥𝑥 y (d) función obtenida con {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3} = {3/7, 1/7, 3/7}, 𝛼𝛼 = 1/2, 𝜃𝜃 = 0,8 y 𝑡𝑡(𝑥𝑥) = 𝑥𝑥2. 

8. TRANSFERENCIA TECNOLÓGICA 

Como consecuencia de obtener la patente ES2909950 de la Estructura de quasi-Sierpinski 
genérica estudiada en la Sección 2, mi director de tesis Jesús San Martín y yo deseamos ponerla 
en conocimiento de la sociedad y obtener su explotación, tanto por la satisfacción personal de 
ver cómo la patente se desarrolla como por el deseo de contribuir a nuestra sociedad.  

Por esta razón, nos apuntamos en marzo de 2022 a un programa de la Universidad 
Politécnica de Madrid (UPM) de creación de empresas, actúaupm, siendo seleccionados 
para participar entre casi 400 proyectos solicitantes y obteniendo uno de los diez premios 
a las mejores ideas de la primera fase. En noviembre de 2022 se realizó la entrega final de 
premios, donde se nos comunicó que habíamos resultado entre los ocho mejores proyectos. 
Paralelamente, también nos presentamos al programa UPM2T de comercialización de 

(a) (b) 

(c) (d) 
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tecnologías, en el que obtuvimos el segundo premio. En ambos programas rebautizamos la 
estructura patentada como Distribuidor Óptimo de Cargas (DOC), y decidimos que su 
comercialización se haría mediante una startup que nosotros mismos fundaríamos: Applied 
Fractal Structures (AFS). 

Gracias a nuestra participación en actúaupm y UPM2T nos contactó un fondo de inversión 
que estaba interesado en nuestra startup. Tuvimos dos reuniones con este fondo de 
inversión; en la primera nos pidieron más detalles acerca de nuestro proyecto y en la 
segunda nos realizaron una propuesta de constitución de empresa que incluía la inversión 
inicial de 1.000.000€ para el capital social de la empresa. Sin embargo, tras consultar la 
propuesta con varios asesores, tanto de la UPM como externos, concluimos que para 
nuestros intereses y para la startup la mejor decisión era rechazar la propuesta del fondo 
de inversión y continuar desarrollando el proyecto por nuestra cuenta. 

En los meses posteriores redefinimos el cliente objetivo hacia el que nos dirigíamos. En las 
primeras fases del proyecto estábamos totalmente orientados a multinacionales que 
construyesen grandes infraestructuras en el mar, como los aeropuertos, ya que el DOC 
presenta ventajas económicas, temporales y ecológicas con respecto a la solución actual, la 
isla artificial. Sin embargo, la magnitud de estos proyectos y de las empresas que los llevan 
a cabo hacen que sea prácticamente imposible acceder a ellos desde una posición de 
empresa emergente como la nuestra. Por este motivo, empezamos a buscar clientes más 
pequeños, y en primer lugar pensamos que el DOC es de interés para aquellas empresas que 
realizan extensiones de ciudades costeras y construyen microislas con fines residenciales. 
Yendo un paso más allá, nos dimos cuenta de que el DOC puede usarse para construir 
plataformas para que los hoteles y resorts de lujo que se encuentran en el mar dispongan 
sus servicios, como restaurantes o tiendas. Así pues, las cadenas hoteleras y sus inversores 
son nuestro cliente objetivo más pequeño. 

Durante el desarrollo del proyecto hemos contactado con diferentes clientes potenciales, 
desde multinacionales hasta inversores hoteleros. En particular, hemos tenido varias 
reuniones con un inversor de hoteles en México y hemos contactado con el ministerio de 
turismo de Mauricio. También hemos expuesto nuestro proyecto ante el director del Centro 
de Desarrollo Tecnológico e Innovación (CDTI), Javier Ponce, y el exministro de Ciencia e 
Innovación Pedro Duque, entre otros, con el fin de que el CDTI valorase la posible inversión 
de nuestro proyecto. El CDTI nos invitó a solicitar fondos una vez que nos hubiéramos 
constituido como empresa. 

Respecto al desarrollo industrial del DOC, construimos un primer prototipo de la patente, 
en acero y a tamaño real (ver Figura 8.1), para ser ensayado en laboratorio y comprobar 
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que distribuye la carga uniformemente. Estos primeros ensayos no fueron satisfactorios 
debido a unas malas condiciones del equipo de medida que llevaron a un desgaste del 
prototipo, por lo que actualmente estamos construyendo una segunda estructura para 
volver a ensayarla en unas condiciones ya corregidas.  

En conclusión, nos encontramos a la espera de ensayar la estructura y obtener así unos 
resultados satisfactorios que nos permitan contactar con antiguos y nuevos clientes 
partiendo de una posición de mayor fortaleza al contar con el respaldo de los experimentos. 

 

Figura 8.1. Prototipo en acero a tamaño real del DOC. 

9. CONCLUSIONES 

Hemos atendido a la protección contra impactos de basura espacial diseñando tres 
estructuras fractales que distribuyen una carga puntual de manera uniforme, la cual es la 
distribución óptima al requerir la menor resistencia de la base sobre la que se apoya. La 
primera es la Estructura de quasi-Sierpinski, en la cual se disponían apoyos fijos horizontales 
en primera instancia por su facilidad de instalación. Sin embargo, esta disposición implicaba 
que los apoyos tuvieran que desplazarse verticalmente (instalando, por ejemplo, muelles), y 
encontramos que estos desplazamientos seguían una combinación lineal de una función 
fractal: la curva de Takagi. Para evitar tener que colocar apoyos que se desplazaran siguiendo 
una complicada curva fractal relajamos las condiciones de diseño, llegando a la Estructura de 
quasi-Sierpinski genérica (patentada), cuyos apoyos son móviles horizontalmente. Esta 
estructura consigue la distribución uniforme sin tener que desplazar sus apoyos 
verticalmente, lo que la hace idónea para cimentar en suelos poco resistentes, como el marino. 
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También hemos extendido esta estructura a un diseño tridimensional, la Pirámide de quasi-
Sierpinski (también patentada), con propiedades y aplicaciones similares. 

El estudio de la protección frente a la radiación nos ha llevado a comparar diferentes 
distribuciones de masa: porosa en rejilla, hexagonal y aleatoria y multicapa. Hemos 
concluido mediante métodos numéricos que las distribuciones porosas ofrecen, en 
promedio, el mismo nivel de protección entre sí y que la multicapa cuando su número de 
poros tiende a infinito. Sin embargo, hemos encontrado que las distribuciones regulares 
ofrecen un nivel de protección menor para ciertos ángulos, por lo que es preferible usar 
distribuciones aleatorias. El análisis radiológico y de la disipación del calor asociado lo 
hemos completado mediante un estudio en el que concluimos que las mixturas asimétricas 
de Koch son efectivas para drenar el calor. En particular, hemos visto que los fractales sólo 
son útiles para disipar el calor cuando están desarrollados sólo en las zonas cercanas a la 
fuente de calor. 

La investigación completada en la tesis nos ha llevado al estudio de otros problemas 
derivados, como el cálculo de las deformaciones de estructuras arbóreas cuando son 
cargadas en su copa. Hemos concluido que la forma deformada de las estructuras arbóreas 
estudiadas es una combinación de tres fractales: el árbol binario que representa su forma 
sin carga, la curva de Takagi que determina sus desplazamientos verticales y la función 𝛽𝛽-
Cantor que determina sus desplazamientos horizontales. De hecho, las dimensiones 
fractales de la curva de Takagi y de la función 𝛽𝛽-Cantor están relacionadas mediante un 
parámetro mecánico de la estructura. 

Otro problema que hemos considerado es la generación de superficies prefractales que 
simulan terrenos y elementos arquitectónicos. El método de generación que hemos creado 
tiene aplicación directa en simuladores, videojuegos y el metaverso ya que ofrece una gran 
capacidad de control al diseñador, por su elevado número de parámetros, y versatilidad, al 
generar indistintamente superficies deterministas y aleatorias. En relación con este 
problema, hemos definido una cierta clase de funciones que hemos demostrado que son 
efectivamente fractales, demostración que hemos realizado usando el operador contractivo 
de Read-Bajraktarevic. 

Por último, estamos transfiriendo la tecnología de una de las patentes concedidas al 
mercado mediante la creación de una startup. Concluimos que este proceso de transferencia 
requiere de un gran desarrollo de los aspectos de la tecnología no relacionados con la propia 
investigación, tales como identificación de clientes, estudio de mercado, modelos de 
negocio, etc. 
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