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RESUMEN

El desarrollo de la industria espacial puede provocar su propia desaparicion. El crecimiento de la actividad espacial
implica un aumento sin precedentes de la basura espacial que, junto a la radiacién, puede suponer la inhabilitacién o
destruccion de las astronaves. Ante esta problematica, en esta investigacion disefiamos un escudo que proteja a las
astronaves frente a los impactos y la radiacién minimizando el peso. Para ello, disefiamos en primer lugar tres
estructuras, dos de ellas patentadas y una de estas en proceso de comercializacién, basadas en geometria fractal que
distribuyen de manera dptima la fuerza. En segundo lugar, atendemos la proteccion frente a la radiacién mediante un
estudio de diferentes distribuciones porosas para concluir que todas ofrecen el mismo nivel promedio de proteccion,
aunque las distribuciones regulares tienen peligrosas fallas. Completamos el estudio radiactivo optimizando la forma
de interfaces para disipar el calor, concluyendo que las estructuras fractales son efectivas cuando desarrollan esta
caracteristica en las zonas de alta temperatura. Finalmente, estas investigaciones nos llevan a atender problematicas
en diferentes areas: el estudio de la forma de los arboles tras carga, el desarrollo de un método versatil de simulacién
de terrenos y la definicion de una clase de funciones fractales.

PALABRAS CLAVE: Industria espacial, basura espacial, radiacién, escudos protectores, fractales.
ABSTRACT

The development of the space industry may lead to its own extinction. The growth of space activity implies an
unprecedented increase in space debris which, together with radiation, can lead to the disabling or destruction of
spacecraft. Faced with this problem, in this research we designed a shield to protect spacecraft against impacts and
radiation while minimizing weight. To this end, we first designed three structures, two of them patented and one
of them in the process of commercialization, based on fractal geometry that optimally distribute the force. Secondly,
we address radiation protection by studying different porous distributions to conclude that they all offer the same
average level of protection, although regular distributions have dangerous flaws. We complete the radiative study
by optimizing the shape of interfaces to dissipate heat, concluding that fractal structures are effective when they
develop this feature in high temperature zones. Finally, these investigations lead us to address problems in different
areas: the study of the shape of trees after load, the development of a versatile method of terrain simulation and
the definition of a class of fractal functions.

KEYWORDS: Space industry, space debris, radiation, protective shields, fractals.
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1. LAINDUSTRIA ESPACIAL Y SUS AMENAZAS

La industria espacial es un pilar indispensable de nuestra sociedad. La navegacién (maritima,
aérea y terrestre) y el transporte asociado, las telecomunicaciones, la observacion terrestre
(prediccion meteoroldgica y explotacion del medio) y la exploracién espacial son las
actividades mas destacadas. El aumento constante de la demanda de los servicios asociados a

estas actividades motiva el desarrollo tecnolégico y crecimiento del sector.

A nivel econdémico, este crecimiento se aprecia en la previsién al alza del presupuesto de
agencias espaciales como la NASA (1). Por otro lado, dicho crecimiento también se ve
reflejado en la evolucion del nimero de vehiculos espaciales que son lanzados cada afio, con
un fuerte aumento en el tltimo lustro (ver Figura 1.1) (2). En estos lanzamientos, el tipo de
vehiculo enviado al espacio por excelencia es el satélite artificial (2), y dentro de estos, cabe
destacar la irrupcion de los micro y nano satélites. El atractivo de esta clase de artefactos
radica en su bajo peso, ya que la minimizacién del peso es un factor clave en la industria
espacial debido al elevado coste asociado a cada kg puesto en 6rbita (3).

Numero de astronaves lanzadas cada aiio
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Figura 1.1. Nimero de astronaves lanzadas en el periodo 2016-2024.

Sin embargo, el aumento de nanosatélites y otro tipo de astronaves conlleva en si mismo
una grave amenaza: el aumento de la basura espacial. Esta basura se compone de piezas de
astronaves, pintura, partes de cohetes, etc. (4), y se estima que actualmente hay en 6rbita
54.000 particulas de basura mayores de 10 cm y 1,2 millones entre 1 cm y 10 cm (5). El
peligro de la basura espacial es su elevada energia cinética, ya que puede impactar contra
las astronaves a velocidades de hasta 15 km/s, lo que generaria graves dafos en las mismas
(6). Ademas de la basura espacial, los satélites y otras astronaves deben afrontar también la
amenaza de la radiacién, en especial la radiacion de particulas. La inutilizacién o destruccién
de los satélites debido a la basura espacial o la radiacion generaria pérdidas econémicas
muy elevadas, ya que se perderian la inversion realizada para construirlos (que puede ser

de cientos de millones de euros (7)) y los beneficios por el servicio que prestan (sélo la
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industria del satélite gener6 $285B en 2023 (8)). Por esta razon, es indispensable proteger

las astronaves, y en particular los satélites, de forma efectiva.

Actualmente, la proteccion de las astronaves se lleva a cabo mediante el escudo Whipple
(9). Este escudo se forma de capas planas y paralelas de aluminio, Nextel ® y Kevlar ®,
separadas entre si una cierta distancia para fragmentar y dispersar la energia de las
particulas que impactan, complementadas con una capa de aislante térmico para la
radiacién. Las principales investigaciones se centran en los materiales (10, 11, 12), aunque
también se esta experimentando sobre la geometria de las capas (13, 14, 15). Sin embargo,
en los satélites y nanosatélites no se implementa una proteccién especifica, sino que se
utiliza la propia estructura como escudo, ya que el escudo Whipple es demasiado
voluminoso y masivo para ser implementado en este tipo de satélites. Por este motivo, es

vital explorar escudos con formas geométricas mas alla de las capas planas y paralelas.

El objetivo fundamental de esta investigaciéon es optimizar el disefio de los escudos
protectores de las astronaves para que, con el minimo peso, maximicen la resistencia al
impacto y aseguren una proteccién efectiva contra la radiacidn. La consecucién de este
objetivo fundamental requiere que se cumplan los siguientes objetivos parciales: 1) Disefiar
una estructura para distribuir las fuerzas generadas en el impacto (Seccién 2), 2) Integrar
en el escudo la proteccion frente a la radiacion (Seccidn 3), 3) Disipar el calor generado

(Seccion 4) y 4) Buscar aplicaciones en otras ramas (Secciones 5, 6, 7 y 8).

2. DISTRIBUCION OPTIMA DE FUERZAS

En esta seccion mostramos diferentes estructuras capaces de distribuir de manera 6ptima
la fuerza del impacto de particulas de basura espacial. Dado que dichas particulas son de
tamafio reducido, modelizamos la fuerza de su impacto como puntual. Ademas,
consideramos la direccién de dicha fuerza perpendicular a la del soporte de las estructuras
(ya que estas se pueden orientar segtn las direcciones preferentes de impacto) y que dicha

fuerza es estatica, por simplicidad.

Por tanto, damos solucién al siguiente problema: dada una fuerza puntual estatica, ;qué
estructuras permiten distribuir dicha fuerza de forma éptima? Muchos problemas de
optimizacién, como este, son resueltos de forma natural empleando estructuras fractales
(16, 17, 18). Guiados por esta idea, nos centramos en una estructura basica de la ingenieria,
el triangulo, y buscamos los fractales asociados, encontrando el tridngulo de Sierpinski (ver
Figura 2.1).
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Figura 2.1. Triangulo de Sierpinski.

En cuanto al tipo de estructura, en esta investigacién nos centramos en estructuras tipo
cercha, debido a su rapida, sencilla y econémica instalacidn. Las cerchas estan formadas por
barras unidas mediante nodos, y conectadas al soporte mediante apoyos puntuales. En este
caso, consideramos tres tipos de apoyos: elastico (se opone al movimiento con una
resistencia proporcional a la distancia que recorre el apoyo, como un muelle), mévil (no se
opone al movimiento) y fijo (se opone al movimiento con una resistencia infinita y no

permite que el apoyo se desplace).

Por ultimo, la distribucién éptima de fuerzas buscada es la distribucién uniforme, ya que es
la Unica que garantiza que el maximo de fuerza sea el minimo posible, y por tanto exige la
minima resistencia a la astronave. Por ello, las estructuras buscadas transformaran una

carga puntual en una carga uniforme.
2.1. Estructura bidimensional con apoyos fijos

El tridngulo de Sierpinski se forma mediante un proceso iterativo basado en la generacion
de cuatro tridngulos, uno de ellos invertido, dentro de un mismo triangulo (ver Figura 2.1).
Este proceso, repetido infinitamente, genera el fractal, pero a nivel ingenieril debemos
quedarnos con un numero finito de iteraciones, obteniendo un prefractal. Si tomamos un
prefractal del tridngulo de Sierpinski de N iteraciones y disponemos un apoyo alli donde
haya un vértice de tridngulo en su base, tenemos que esa estructura es mecanicamente
equivalente a una Estructura de quasi-Sierpinski de N niveles (ver Figura 2.2). Denotamos
por L la longitud de las barras inclinadas del primer nivel y por § al angulo de inclinacion
de dichas barras.
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Figura 2.2. Estructura de quasi-Sierpinski de N niveles, correspondientea N = 5.

La Estructura tiene un nimero finito de apoyos, por lo que aproximamos la distribucién
uniforme en el soporte haciendo que cada apoyo soporte un valor de fuerza proporcional al
area que cubre cada apoyo; esto es, los apoyos exteriores soportaran una fuerza de valor
F /2N, mientras que los interiores soportaran una fuerza de valor F/2N~1, El criterio de
distribucion uniforme determina, mediante la primera ley de Newton, los esfuerzos que han
de soportar las barras de la estructura. Por otro lado, como se mencion6 en la introduccion,
es necesario minimizar el peso de la estructura. Para ello, debemos garantizar que ninguna
barra de esta esté sobre dimensionada, por lo que todas deben trabajar al mismo valor de
tension. Este criterio, una vez conocido el esfuerzo de cada barra, determina el rea de la
seccion transversal de todas las barras de la estructura, denotando por A el area de la
seccion transversal de las barras del primer nivel. Por otro lado, consideramos que todas
barras son del mismo material, cuyo mddulo de elasticidad denotamos por E. Ademas, en
primera instancia, tomaremos los apoyos de la estructura como fijos en las dos direcciones
del plano. De esta manera, la Estructura de quasi-Sierpinski de N niveles queda definida

mecanicamente.

La Estructura de quasi-Sierpinski de N niveles es una estructura hiperestatica, esto es,
dispone de un nimero de apoyos y barras mayor del necesario para garantizar la estabilidad
estructural. En una estructura hiperestatica, el sistema de cargas y esfuerzos de las barras
no sé6lo ha de cumplir la primera ley de Newton, sino también las ecuaciones de
compatibilidad de deformaciones. En particular, la Estructura de quasi-Sierpinski de N

niveles tiene un grado de hiperestaticidad de 2V 1

— 1, porlo que ha de cumplir ese niimero
de ecuaciones de compatibilidad de deformaciones. Dichas ecuaciones vienen dadas por el

Principio de los Trabajos Virtuales (PTV).

El cumplimiento de las ecuaciones del PTV y la satisfaccion de los criterios de distribucion
uniforme y misma tension en las barras lleva a que tengan que permitirse desplazamientos

verticales en los apoyos de la estructura. Esto puede conseguirse disponiendo apoyos
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elasticos verticalmente, pero fijos horizontalmente. Operando, llegamos al siguiente

teorema (19):

Teorema 2.1. Sea una Estructura de quasi-Sierpinski de N niveles con apoyos fijos
horizontales que soporta una carga puntual vertical de valor F en su vértice superior tal que
los nodos de sus apoyos exteriores se desplazan una misma cantidad D. Una carga vertical
uniforme por unidad de drea en sus apoyos se genera si y solo si el desplazamiento vertical §;
del nodo del apoyo i-ésimo es:

i—1 . a
5i=D—ZQT(ﬁ), l=1,...,2N 1,

FL

donde Q) = m

y T es la funcién de Takagi.
La funcién de Takagi T es una funcién fractal (ver Figura 2.3). Por tanto, la distribucién de
carga uniforme se obtiene si y sélo si los apoyos se desplazan verticalmente siguiendo una

combinacién lineal de una funcién fractal: la funcién de Takagi.

L L I
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Figura 2.3. Funcién de Takagi.

Una Estructura de quasi-Sierpinski de N niveles cuyos apoyos se desplazan verticalmente
siguiendo una combinacion lineal de la funcién de Takagi permite obtener una distribucién
uniforme de cargas en la base. Cuanto mayor sea el nivel N, mayor sera el nimero de apoyos
y por tanto mas cerca estara la distribucion obtenida de la uniforme. Recalcamos que dicha
esta Estructura es 6ptima desde un punto de vista de distribucion de cargas, al requerir la
minima resistencia del soporte, y de peso, al soportar todas sus barras el mismo valor de
tensién. Por ultimo, indicamos que la distribucién uniforme no sélo se obtiene al comprimir

la estructura, sino también al traccionarla.
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2.2. Estructura bidimensional con apoyos mdéviles

La solucién aportada en la Seccién 2.1 es éptima bajo dos criterios. Sin embargo, desde un
punto de vista ingenieril, no es practica al requerir la obtencién y colocacién de apoyos
con caracteristicas diferentes muy especificas. Por este motivo, vamos a generalizar el
disefio geométrico y mecanico de la Estructura de quasi-Sierpinski para facilitar su
construccién y aplicacion, a cambio de sacrificar la condicién de optimalidad de igualdad

de tension de las barras.

La nueva solucién es la Estructura de quasi-Sierpinski genérica (ver Figura 2.4). En esta
estructura, las barras inclinadas de un nivel n, con n = 1,2, ..., N, forman un angulo con la
horizontal que denotamos por £, pudiendo ser distinto para cada nivel. Por otro lado, el
producto del area de la seccion transversal por el mdédulo de elasticidad de las barras

inclinadas de un nivel n (magnitud que denotamos por J,,) puede ser cualquiera, mientras

Jtan(B,)
2" tan(By)’

valor del producto para la barra horizontal del primer nivel. Por tltimo, los apoyos son fijos

que para las barras horizontales del nivel n este producto ha de ser siendo J el

verticales pero mdviles horizontales salvo uno, que también es fijo horizontal para dar

estabilidad al conjunto.
Nivel 0 (n=0)

Nivel 1 (n=1)

Nivel 3 (n=3)
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Figura 2.4. Estructura de quasi-Sierpinski genérica de N niveles, correspondiente a N = 5.

La Estructura de quasi-Sierpinski genérica de N niveles también es hiperestatica. Sin
embargo, en este caso, la disposicién de apoyos moviles horizontales y la selecciéon
establecida de los productos de area y médulo de elasticidad de las barras horizontales hace
que se cumplan las ecuaciones de compatibilidad de deformaciones sin necesidad de aplicar

ningln cambio a la estructura. Por ello, enunciamos el siguiente teorema (20):

Teorema 2.2. Sea una Estructura de quasi-Sierpinski genérica de N niveles. Si la estructura
soporta una carga puntual vertical de valor F en su vértice superior, entonces se genera una

carga vertical uniforme por unidad de drea en sus apoyos.
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Por tanto, la Estructura de quasi-Sierpinski genérica genera una distribuciéon uniforme de
carga. Ademas, aunque no se haya tomado como condicién de disefio, puede cumplir el
criterio de optimalidad de igualdad de valor de tensién en sus barras, aunque su definiciéon
genérica permite adaptarse a otras condiciones de disefio y aun asi obtener la distribucién
uniforme de carga. También es interesante notar que esta Estructura permite disponer
diferentes materiales en sus barras (siempre que se cumpla la regla de los productos de area
y modulos de elasticidad establecidos), a lo que afiadimos la flexibilidad geométrica que
aportan los diferentes dngulos de las barras inclinadas. Gracias a su caracter innovador,
hemos patentado esta estructura (“Estructura soporte para la distribuciéon uniforme de
cargas sobre un segmento recto y prisma soporte para la distribucién uniforme de cargas
sobre una superficie”, n2 ES2909950).

2.3. Estructura tridimensional con apoyos moéviles

La Estructura de la Seccién 2.2, bidimensional, tiene un disefio geométrico basado en el
nacimiento de un nuevo triangulo de menor tamafio en cada nodo de la estructura. Si
aplicamos este concepto a un disefio tridimensional y generamos una piramide en cada

nodo, obtenemos la Pirdmide de quasi-Sierpinski genérica de N niveles (ver Figura 2.5).

A
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Figura 2.5. Pirdmide de quasi-Sierpinski genérica de N niveles, correspondiente a N = 5.

En esta estructura, los dngulos de inclinacién de las barras inclinadas también pueden ser
distintos segun el nivel. Respecto a la magnitud producto de area de seccion transversal y

modulo de elasticidad, distinguimos los siguientes casos:

- Barras inclinadas: este producto, que denotamos por J,, para las barras inclinadas del
nivel n, puede ser cualquiera siempre que sea el mismo para todas las barras de un

mismo nivel.
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- Barras horizontales direccién X: Sea J¥ el valor del producto de las barras horizontales

direccion X del primer nivel, distinguimos dos casos:

e Barrasdel niveln = 1,2, ..., N — 1 y barras exteriores del nivel n = N (pertenecientes

. ) JX tan(B1)
al perimetro de la base): el producto es T (B
e Barras interiores del nivel n = N (no pertenecientes al perimetro de la base): el

2 JX tan(B,)

producto es == T

- Barras horizontales direccién Y: Sea J¥ el valor del producto de las barras horizontales

direccion Y del primer nivel, distinguimos dos casos:

e Barras del niveln = 1,2,..., N — 1 y barras exteriores del nivel n = N: el producto es

JY tan(B4)
4"1tan(By)’

2 JY tan(B;)

* Barras interiores del nivel n = N: el producto es 75— By

En cuanto a los apoyos, establecemos que todos los apoyos, salvo dos, sean fijos verticales y
mdaviles horizontales en las direcciones X e Y. Otro apoyo, que puede ubicarse en cualquier
nodo del nivel N, es fijo vertical y horizontal en las direcciones X e Y. Por ultimo, el altimo
apoyo, que puede ubicarse en cualquier nodo del nivel N, es fijo vertical, fijo horizontal en
una direccion no coincidente con la de la recta que une este apoyo y el descrito en el punto

anterior y mévil horizontal en la direccién perpendicular a esta tltima.

Como en la Estructura de quasi-Sierpinski genérica de N niveles, la Piramide también es
hiperestatica. De nuevo, la disposiciéon de apoyos mdviles horizontales y la seleccién
establecida de los productos de area y médulo de elasticidad de las barras horizontales en
ambas direcciones hace que se cumplan las ecuaciones de compatibilidad de deformaciones
sin necesidad de aplicar ninglin cambio a la estructura. Por ello, enunciamos el siguiente

teorema (20):

Teorema 2.3. Sea una Pirdmide de quasi-Sierpinski genérica de N niveles. Si la estructura
soporta una carga puntual vertical de valor F en su vértice superior, entonces se genera una

carga vertical uniforme por unidad de drea en sus apoyos.

Por tanto, la Piramide de quasi-Sierpinski genérica genera una distribuciéon uniforme de
carga. De nuevo, puede cumplir el criterio de optimalidad de igualdad de valor de tensién
en sus barras, permite disponer diferentes materiales (siempre que se cumpla la regla de
los productos de area y moddulos de elasticidad establecidos) y tiene la flexibilidad

geométrica asociada a los diferentes angulos de las barras inclinadas. Por ultimo, notemos
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que en este caso la distribucién uniforme es superficial y no lineal. Gracias a su caracter
innovador, hemos patentado esta estructura (“Estructura soporte para la distribucién

uniforme de cargas sobre una superficie”, n2 ES2909433).

3. PROTECCION FRENTE A LA RADIACION

Una vez atendida la distribucién de fuerzas de impacto, ahora nos centramos en resolver
otro problema fundamental para los satélites: la radiacion. En particular, nos planteamos
si, dada una masa fija, existe una distribucién de dicha masa que maximice la proteccién
frente a la radiacion. En una primera aproximacion, en esta investigacion tratamos el caso

bidimensional.

Las estructuras protectoras basicas se dividen en porosas y multicapa (21), las cuales
modelamos mediante un rectdngulo de ancho B con porciones de su superficie vaciadas
mediante circulos o rectangulos de igual anchura y menor altura, respectivamente. En el
caso de las estructuras porosas, vaciamos el rectangulo mediante N circulos que no solapan
y que ocupan un area B - p. En particular, consideramos tres tipos de estructuras porosas
(ver Figura 3.1): en rejilla (RG), hexagonal (RH) y aleatoria (UR). En el caso de la multicapa
(8), vaciamos el rectangulo mediante rectangulos de ancho B y altura tal que la suma de las
alturas de todos los rectangulos sea igual a p (ver Figura 3.1). Por ello, la fraccion de area

vaciada en todas las estructuras es siempre p.

(a) (b)

(c) (d)

Figura 3.1. (a) Estructura porosa en rejilla (RG), (b) Estructura porosa hexagonal (RH), (c) Estructura porosa
aleatoria (UR) y (d) Estructura multicapa (S).
Modelamos los rayos o trayectorias de particulas radiactivas por una recta L que interseca
al rectdngulo en un punto de su base a distancia v del vértice inferior izquierdo y en un
punto del lado opuesto a su base a distancia w del vértice superior izquierdo. Dada una

recta, la proteccion que ofrece una distribucidon viene dada por la cantidad de material
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solido que encuentra dicha recta al intersecar al rectangulo. Por tanto, definimos las

siguientes variables (ver Figura 3.2):

- Angulo de incidencia f: 4ngulo formado por la recta que modela al rayo o trayectoria y

la base del rectdngulo. Notemos que cualquier recta viene dada por vy S.

- Distancia sélida G, (v, £): suma de las longitudes de los segmentos de la recta que se
encuentran dentro del rectangulo sobre las zonas no vaciadas, con T = RG,RH, UR, S.
Esta variable representa con cudnta materia s6lida se encuentra el rayo o trayectoria a

su paso por el rectangulo.

- Diferencia sélida w, (v, B): Para una recta dada, diferencia entre la distancia sdlida de la
estructura 7 y la distancia sélida de la estructura multicapa S, esto es, w,(v,B) =
G,(v,B) — Gs(v,B), con T = RG,RH,UR. Esta variable representa cuan superior es la
proteccién de la estructura T con respecto a la multicapa (tomada como referencia ya que

el escudo actual, el Whipple, es multicapa).

Dado que los rayos o trayectorias radiactivas pueden tener cualquier direccion, realizamos
un estudio estadistico de la variable G, (v, 8) para cada distribucién para asi determinar cual
es el nivel de proteccién de cada una. Para ello, para cada distribucién, generamos Z rectas
diferentes para obtener una muestra de 8 y G; (en el caso de la estructura UR, repetimos
este proceso también con M disposiciones diferentes de circulos, al ser aleatoria). Dada una
muestra, consideramos la funcion de distribucion FGT de G;. En el caso de la estructura S,
obtenemos Fg, tedricamente, pero para las estructuras restantes el estudio es

excesivamente complejo a nivel teérico, por lo que obtenemos el estimador F¢;_de la funcion

de distribucion (la funcion de distribucién empirica).

Los resultados obtenidos muestran que, segin aumenta el nimero de circulos N de una
distribucion (y, por tanto, disminuye el tamafno de estos ya que la fraccidn p es constante),
mas cerca estd la distribucion empirica F; de las tres distribuciones porosas de la
distribucion Fg, de la multicapa (22). Es decir, cuando N tiende a infinito, el nivel de
protecciéon de las estructuras porosas converge al de la multicapa en distribucion de
probabilidad. Si realizamos un analisis mas exhaustivo, encontramos que, para cualquier
rayo o trayectoria, exceptuando a un conjunto pequeiio para las estructuras RG y RH,
cuando N tiende a infinito la distancia sélida de cualquier distribucién converge a la
multicapa (22). Esto significa que, para un nimero N suficientemente grande, la proteccién
de todas las estructuras es la misma, probabilisticamente e incluso para cualquier rayo o

trayectoria (exceptuando a dicho conjunto “pequeno” para las estructuras RG y RH).

En la Figura 3.2 mostramos la evolucion de la diferencia sélida wgs;(v, ) segun N en

funcién del angulo S, en radianes. Apreciamos que, segun aumenta N, las diferencias se
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concentran progresivamente en torno a la recta que simboliza la diferencia nula, salvo para
un conjunto de angulos 5. Demostramos que estos angulos son aquellos para los cuales la
tangente es un numero racional, y por tanto el conjunto es de medida nula (22). Ademas, y
como se muestra en la Figura, dicho conjunto tiene forma fractal, ya que muestra patrones
repetidos a diferentes escalas (en la Figura, a mayor intensidad del rojo, mayor cercania al
fractal tedrico correspondiente a N tendiendo a infinito). Sin embargo, este conjunto de
medida nula desaparece cuando evaluamos la estructura aleatoria UR (ver Figura 3.3). Esto
se debe a que no hay una colocacién regular de los circulos y por tanto la convergencia de
la diferencia sélida al valor cero se da independientemente de si la tangente del angulo es

racional o irracional (22).
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of L e L e e e i g
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Figura 3.2: Diferencia sdlida wgs (v, B) en funcién de B para diferentes valores de N para la estructura RG con

B=4yp=0,1.
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Figura 3.3: Diferencia sélida wyg (v, B) en funcién de 8 para diferentes valores de N para la estructura UR con

B=1yp=0,5.
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La equivalencia del material sélido atravesado por un rayo o trayectoria arbitraria
independientemente de su distribucidon tiene una clara utilidad en el blindaje nuclear. Por
una parte, proporciona validez al calculo de la porosidad p de un material mediante el
coeficiente de atenuacién lineal de la radiacion (23). Por otra, justifica el uso de materiales
porosos con fines de blindaje, lo que es especialmente relevante ya que el hormigén es un
material poroso barato y facil de usar (24, 25). Si aplicamos estos resultados a la proteccion
de los satélites, tenemos que, dada una masa fija, ha de elegirse la estructura mas resistente
alos impactos, ya que la radiacién atraviesa la misma cantidad de materia. También es vital
sefialar el peligro que supone la singularidad fractal de las estructuras regulares RG y RH,
ya que, si se sigue trabajando en una instalacidn nuclear con blindaje de estructura porosa

regular, se producird una irradiacidn fatal.

Por ultimo, explicamos los fractales encontrados en los patrones de difraccion de rayos X de
materiales amorfos con granos finos de material monocristalino (26, 27). Los granos no
tienen una orientacion fija, pero la orientacion de los rayos X si es constante. Esto es
equivalente a mantener la estructura regular de un grano con orientacién fija e irradiarlo

desde todas las direcciones, lo cual es el método aplicado en nuestra investigaciéon

4. DISIPACION DEL CALOR

En los procesos de frenado de particulas propios de la proteccién frente al impacto y la
radiacion se produce calor que es necesario disipar. Por este motivo, esta investigacion se
centra ahora en optimizar la forma de una interfaz altamente conductora para maximizar el

drenaje de calor.

En particular, el problema consiste en encontrar la forma éptima de una interfaz que divide
un dominio en dos subdominios, uno de los cuales contiene una fuente de calor, para
minimizar la temperatura maxima en dicho subdominio. De entre todas las posibles formas
que puede tomar esta interfaz, nos centramos en un conjunto de mixturas asimétricas de
prefractales de Koch (ver Figura 4.1). El fractal de Koch en el que se basan estas mixturas se
forma mediante un proceso iterativo que consiste en dividir un segmento en tres partes
iguales y sustituir la parte central por dos segmentos de igual longitud que las partes
restantes, de manera que cada nuevo segmento forme un angulo de 60° con la direccién del
segmento original (ver Figura 4.1); es decir, se “hace crecer” una parte del segmento. Por su
parte, la mixtura asimétrica de Koch permite realizar este proceso con angulos diferentes,
no necesariamente iguales a 60° en cada uno de los segmentos. En esta investigacion
utilizamos dichas mixturas prefractales ya que 1) estan formadas por segmentos, lo que
facilita su fabricacion, y 2) pueden formar diferentes estructuras en sus distintas partes, lo
que permite que la interfaz se adapte a las condiciones del problema.
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Figura 4.1. (a) Fractal simétrico de Koch y (b) ejemplo de mixtura asimétrica de un prefractal de Koch.

Como vemos, estos prefractales se construyen iterativamente, por lo que la solucién 6ptima
se puede generar mediante un proceso iterativo. Dada la interfaz correspondiente a una
determinada iteracion, el proceso consiste en elegir un segmento de esta y hacer crecer su
parte central una cierta cantidad. El segmento elegido en cada iteracion es el segmento con
el mayor flujo de calor, ya que este es el que presenta la mayor diferencia de temperaturas
entre los dos subdominios, y el objetivo es obtener una distribucion de temperaturas lo mas
uniforme posible. Por otra parte, la cantidad que hacemos crecer la parte central del
segmento es aquella que minimiza la temperatura en el subdominio con la fuente de calor.
Esta cantidad puede ser cero, es decir, lo mejor puede ser no hacer crecer ese segmento, con
lo cual se descartaria para siguientes iteraciones. Este proceso iterativo para cuando la
interfaz no presenta ningdn segmento para crecer, ya que esto significa que ningin

crecimiento mejora la interfaz conseguida, asumiendo por tanto que esta es la 6ptima.

Unar = 140.2 Umae = 82.2 gz = 75.6
@ ®) ©
Uz = 71.9 e = T0.7 ez = 70.0

(d) (e) [63)

| SEE——
0°C 50°C 100°C 150°C

Figura 4.2. Crecimiento iterativo (a)-(f) del prefractal de la mixtura asimétrica de Koch, mapas de calor
correspondientes y valor de la temperatura maxima u,,,, en grados Celsius.
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Mediante este proceso se generan interfaces que se aproximan iterativamente a la fuente de
calor (ver Figura 4.2). Esto se debe a que los segmentos que crecen primero son los de mayor
flujo de calor, y estos son los mas cercanos a la fuente, y lo 6ptimo es que crezcan lo maximo
posible hacia ella, ya que la interfaz es altamente conductora. Notemos que con este proceso

conseguimos una reduccion del 50% de la temperatura maxima u,,,, en el dominio (28).

Estos resultados son légicos desde un punto de vista fisico, ya que la interfaz es mas
conductora que el resto del dominio, por lo que constituye un camino mas eficiente para
disipar el calor. Por ello, cuanto mas cerca esté la interfaz de los puntos de maxima
temperatura del dominio, mas eficientemente se disipa el calor. Por otra parte, este
crecimiento ha de estar equilibrado con el aumento de longitud de la interfaz, ya que un
aumento de la longitud implica un aumento de resistencia al flujo de calor a través de ella.
Por ello, no es efectivo hacer crecer la interfaz en todos los puntos, sino que es mas
conveniente hacerla crecer iinicamente en las partes suficientemente cercanas a la fuente

de calor para compensar el aumento de resistencia por la longitud.

Por otra parte, la posicion de la fuente de calor afecta a la forma de la interfaz éptima. Si la
fuente esta centrada, la interfaz sé6lo hace crecer una punta y el proceso termina, ya que
ningun crecimiento de ningin segmento la hace acercarse més a la fuente (ver Figura 4.3a).
Por otro lado, si la fuente estd en un lado, la interfaz se desarrolla hacia ella, generando

incluso puntas secundarias (28) (ver Figura 4.3b).

(a) (b)

Figura 4.3. Interfaz 6ptima y mapa de calor dada una fuente de calor (a) centrada y (b) en un lado. El centro de
la fuente de calor se representa mediante un punto negro.

La conductividad de la interfaz es otro factor para considerar. Independientemente de la

conductividad, el crecimiento de una interfaz implica un aumento de resistencia dado. Sin

embargo, a mayor conductividad, mayor es el drenaje de calor. Por tanto, a mayor

conductividad, menor es la penalizacién relativa del aumento de resistencia al flujo de calor

con respecto al drenaje, y, por tanto, mas crece la interfaz (28).
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Como conclusiones de esta investigacidn, las interfaces basadas en prefractales de mixturas
asimétricas de Koch permiten disipar el calor de manera efectiva, consiguiendo una
reduccién de temperatura maxima de hasta el 50%. Esto se debe a que estas mixturas
permiten un crecimiento local, desarrollandose sélo en las zonas de mayor temperatura.
Estareflexion tiene otra lectura: no todos los fractales son apropiados para dar forma a estas
interfaces para disipar calor. En particular, aquellos fractales que presenten formas
intrincadas en zonas de baja temperatura tendran una alta resistencia al flujo de calor sin

que ello implique un alto efecto drenador.

5. DEFORMACIONES EN ESTRUCTURAS ARBOREAS

En la Seccién 2 hemos visto cdmo las estructuras fractales como la de quasi-Sierpinski son
utiles para la distribucion de fuerzas. Notemos que, si le damos la vuelta a dicha estructura,
obtenemos una estructura que se asemeja a la de un arbol, lo que da origen al estudio de

dos problemas, uno biolégico y otro arquitecténico.

El problema biol6gico surge de la propia morfologia de la estructura y es de especial interés
dada laimportancia de los drboles en nuestro entorno por razones ecoldgicas y econémicas.
Los arboles necesitan ser analizados desde un punto de vista mecanico para determinar
como se deforman y asi determinar la forma del arbol cuando alcanza el equilibrio tras ser
cargado en su copa (peso de la lluvia, nieve, hojas, etc.). En particular, el estudio de la copa
y sus deformaciones tras carga es de gran importancia para varios procesos relacionados
con la humedad y temperatura en la copa (29, 30), la lluvia (31, 32) y simulaciones de
bosques (33) para la dispersion de semillas, polen y fuegos. Por otra parte, el problema
arquitectonico aparece al comprobar que las estructuras arboéreas son ampliamente
utilizadas para el soporte de cargas, por lo que es necesario conocer sus deformaciones tras

carga para determinar sus correctas condiciones de servicio.

En esta investigacién utilizamos como modelo de andlisis el arbol binario bidimensional
(ver Figura 5.1). Esta estructura se compone de barras que se bifurcan progresivamente; en
particular, un arbol binario de P niveles es un arbol en el que todos los caminos que unen la
base con la copa incluyen P bifurcaciones, generandose un nuevo nivel tras cada
bifurcacién. Las estructuras de los arboles son de nodos rigidos, por lo que habra que
considerar para el calculo esfuerzo axial (direccion de la barra), cortante (perpendicular a
la direccion de la barra) y momento flector (perpendicular al plano del arbol). La reduccién
de longitud de razén 1/2 de nivel a nivel garantiza que los nodos de la copa estén a la misma
distancia, por lo que consideramos que la carga aplicada en su copa se distribuye

uniformemente entre todos ellos.
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Figura 5.1. Estructura de arbol binario de P niveles, correspondiente a P = 3.

En esta estructura, denotamos por L a la longitud de las barras del primer nivel y por 8 al
angulo de inclinacién. Ademas, denotamos por I, A y A" a la inercia, area de seccién
transversal y drea a cortante, respectivamente, de las barras del primer nivel, y pora, uy v
los factores de reduccion de dichas magnitudes, respectivamente, de un nivel al siguiente
(pensemos que las ramas de los arboles se estrechan en su camino a la copa). Finalmente,
denotamos por E'y G alos médulos de Young y elasticidad transversal, respectivamente, del

material de las barras.

El objetivo es calcular la deformacion de la estructura de arbol binario definida con los
pardmetros geométricos y mecanicos anteriormente mencionados. Para ello, calculamos los
desplazamientos verticales y horizontales por unidad de carga que sufren los nodos de la

estructura tras aplicar en cada nodo de la copa una carga vertical hacia debajo de valor 1/2".
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Figura 5.2. Desplazamientos verticales V6i’3’n*por unidad de carga segun la posicién z(i*,n*), del nodo en un
arbol binario. El eje vertical se muestra invertido para ofrecer una mejor representacioén de la forma final de la
estructura. Los parametros del arbol son 8 = /3, E = 10 N/m?,G =5-108 N/m? L =0,5m,] = 3,1416 -

107*m* A =3,1416-10"?2m? A’ = 2,8274-10"2m?,a =9, u = 3,v = 3.
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Los desplazamientos verticales, que denotamos por V615,n*, de cada nodo n* de algunos
niveles i* se muestran, en funcion de su coordenada horizontal z(i*,n*), en la Figura 5.2
(como referencia, los nodos primero y tltimo de un nivel infinito i* — co tienen coordenada
0 y 1 respectivamente). Lo que observamos en dicha Figura es que los desplazamientos
siguen combinaciones lineales de prefractales de la funcién de Takagi, y a mayor nivel,
mayor cercania al fractal de Takagi. De hecho, en un nivel tedrico infinito, los nodos de la
copa o bien se desplazan verticalmente siguiendo una combinacion lineal de la funcién de

Takagisil <a<16,1<u<4y1<v<4,obien se hacen infinitos para valores de los
parametros mecanicos fuera de esos intervalos (34).

Los desplazamientos horizontales, que denotamos por H6i5_n*, de cada nodo n* de algunos
niveles i* se muestran, en funcién de su coordenada horizontal z'(i*, n*), en la Figura 5.3
(como referencia, los nodos primero y ultimo de cada nivel tienen coordenada 0 y 1
respectivamente). Los desplazamientos horizontales son resultado de la combinacién de
tres prefractales de funciones inversas de f-Cantor (30), una para el momento flector, otra
para el esfuerzo axial y otra para el cortante, donde el parametro £ depende
respectivamente de a, u y v. De hecho, en un nivel teérico infinito, los nodos de la copa o
bien se desplazan horizontalmente siguiendo una combinacién lineal de tres inversas de
funciones f-Cantor si1 <a <16, 1 <u<4y1<v<4, o bien se hacen infinitos para
valores de los parametros mecanicos fuera de esos intervalos (34).
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Figura 5.3. Desplazamientos horizontales H6§,n*por unidad de carga segun la posicién z'(i*, n*), del nodo en
un arbol binario. Un valor positivo indica hacia la izquierda si z'(i*,n*) < 1/2 y hacia la derecha si z' (i*, n*) >
1/2. Los parametros del arbol son 8 = /3, E = 10'*° N/m?,G =5-108 N/m?, L = 0,5m,I = 3,1416 -
107*m* A =3,1416-1072m?, A’ = 2,8274-102m%,a=9,u =3,v = 3.
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La combinacién de ambos desplazamientos en cada nodo, vertical y horizontal, genera la
forma deformada que se muestra en la Figura 5.4. Por tanto, la forma deformada tras carga
de un arbol viene dada por la combinacion de los fractales Takagi y §-Cantor, lo que indica
una conexién entre ambos. De hecho, comprobamos que sus dimensiones fractales, Dy y D,
para Takagi y el f-Cantor correspondiente a los momentos flectores respectivamente, se

relacionan mediante la siguiente expresion (34):

- 4 = .~y V6"

b P

”H\MHMMHH H‘SR

(c) (d)

Figura 5.4. (a) Arbol binario sin deformar (linea discontinua negra) y deformado (linea continua roja), (b)
Desplazamientos verticales V&% de los nodos del tltimo nivel en magenta, (c) Desplazamientos horizontales
H6&R de los nodos del tltimo nivel en azul y (d) Curva de Takagi y combinacién lineal de inversas de funciones
B-Cantor, mostrando los desplazamientos horizontales H5® en vertical.

Como conclusiones, es interesante notar que los fractales que rigen los desplazamientos del
arbol dependen de sus parametros mecanicos. Esto implica que la forma deformada puede
cambiar drasticamente sin cambiar su forma original (arbol binario), sino simplemente
alterando sus caracteristicas mecanicas. En particular, el parametro a, que representa la
reduccidn de la inercia de las ramas de un nivel al siguiente, es el que controla tanto los
desplazamientos verticales (como parametro de la curva de Takagi) como los horizontales

(como parametro de una de las funciones inversas de f-Cantor).

6. GENERACION DE SUPERFICIES PREFRACTALES

En las Secciones 2 y 5 hemos trabajado con la funcién de Takagi. Dicha funcién se obtiene
como una suma infinita de ondas triangulares de amplitudes decrecientes y frecuencias
crecientes. Motivados por la idea de extender este método de construccién de fractales,

utilizamos funciones diferentes a la onda triangular, obteniendo diferentes graficas de
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aspecto fractal. Yendo un paso mas all4, pasamos de funciones de R en R a funciones de R?
en R, con lo que conseguimos superficies con aspecto fractal que modelan elementos
arquitectonicos y decorativos. Finalmente, afiadimos factores aleatorios a este método,
obteniendo superficies aleatorias de aspecto fractal que simulan montanas, crateres o
dunas. Por tanto, el método presentado en esta seccién es un método de generaciéon de
superficies prefractales que dispone de una amplia variedad de parametros, con lo que el
disefiador puede modelarla a su gusto. Por tanto, este método es de aplicacién directa en

simuladores, videojuegos o el metaverso.

Para describir este método, necesitamos las siguientes definiciones:

Regidn de definicion del prefractal: denotada por @, es un poligono regular de k lados en

el que se define la superficie prefractal.

- Sucesién de conjunto de sitios: denotada por {Q,}NEY, es una sucesién de conjuntos,

denotados por (Q,, de puntos contenidos en ®, denominados sitios. Cada conjunto de

sitios tiene k™1 sitios.

- Funcién de teselacion: denotada por Ay, es la funcién que a cada punto (x,y) de @ le
asocia el sitio del conjunto (1,, mas cercano segiin una métrica basada en una norma p.
Notemos que, para cada n, 1}, genera en ® una teselacién con k™! teselas, una por cada

sitio del conjunto £,,.

- Funcién semilla: denotada por f, es una funcién que asocia a cada punto (x,y) de ® un
cierto valor, tomando A;, como parametro. Asi, dos puntos pertenecientes a una misma
tesela tomardn la funcién f con el mismo parametro, mientras que dos puntos

pertenecientes a diferentes teselas tomaran dicha funcién con dos pardmetros distintos.

- Superficie prefractal de orden N: Denotada por Sy, devuelve para cada punto (x,y) de ®
la suma de la funcién f evaluada en dicho punto con los sucesivos pardmetros

143, ..., Ay, y multiplicada por un peso. Especificamente, viene dada por Sy(x,y) =
N-10™1f(x,y; 25, (x,¥)), donde 6 > 0 es el peso.

Los conjuntos de sitios se pueden determinar de infinidad de maneras. En este trabajo
mostraremos, como ejemplo, conjuntos de sitios denotados por Qf generados de la
siguiente manera: el primer conjunto, Q, contiene iinicamente como sitio al punto (0,0). El
segundo conjunto, O}, contiene k sitios que se encuentran todos a distancia L del sitio (0,0)
del conjunto anterior O, y el 4ngulo que forman la horizontal y la recta que une cada sitio
con el (0,0) se determina aleatoriamente. En general, el conjunto Q7 se obtiene a través de
los sitios del conjunto QF_;, generando desde cada uno de sus sitios k nuevos sitios a

distancia L - "2 y con 4ngulo aleatorio. En la Figura 6.1 se muestran los sitios de conjuntos
T OT T
05,905, ..., Q6.
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Figura 6.1. Sitios de los conjuntos QF, Q7, ..., QF generados tomando k = 4,L = 0,25y r = 0,5.

De igual manera, dada una sucesién de conjuntos de sitios, se pueden formar tantas
teselaciones como normas p existentes. A modo de ejemplo, en la Figura 6.2 mostramos las
teselaciones correspondientes a cada conjunto Qf,Q7F,..,Qf anterior utilizando las

funciones de teselacion 47, 43, ..., A5, con la norma 2.

A

Figura 6.2. Teselaciones correspondientes a cada conjunto Qf, Q7, ..., Q7 mostrado en la Figura 6.1 utilizando

las funciones de teselacion 43, 43, ..., Ag, con la norma 2.

Una vez obtenidas las sucesivas teselaciones, podemos aplicar sobre cada una de ellas una
infinidad de funciones semilla. A modo de ejemplo, en la Figura 6.3 mostramos la aplicaciéon
de la funcién piramidal de cuatro caras sobre cada una de las teselaciones presentadas en
la Figura 6.2. Esta funcién genera una piramide en cada tesela cuyo vértice superior se sittia

en el sitio correspondiente a dicha tesela.
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Figura 6.3. Funcion piramidal de cuatro caras aplicada en cada una de las teselaciones mostradas en la

Figura 6.2.

Como vemos en la Figura 6.3, se han generado tantas superficies como teselaciones (y, por
tanto, como conjuntos de sitios), cuyo nimero es N. Por tanto, la superficie prefractal final
es el resultado de sumar las N superficies ponderadas por pesos. En resumen, el método se

integra de los siguientes pasos:
1. Se eligen sucesivos conjuntos de sitios (4, Q,, ..., Oy en ®.

2. Se genera una teselacion por cada conjunto de sitios seguin la funcién de teselacion Ay,

con la métrica basada en la norma p elegida.

3. Lafuncion semilla f se calcula en las teselas de cada teselacién usando como pardmetro

la funcidén Ay, que es diferente para cada tesela.

4. Finalmente, la superficie prefractal se obtiene sumando cada funcién semilladen =1a

n = N ponderada cada una por el peso 81,

Con este método se pueden generar superficies realistas que simulan terrenos naturales
como terrenos con crateres (ver Figura 6.4a), terrenos montafiosos con fallas (ver Figura
6.4b) o cafiones (ver Figura 6.4c), entre otros. Estas superficies se han obtenido utilizando
conjuntos de sitios determinados por alguna componente aleatoria. Sin embargo, se pueden
utilizar también conjuntos de sitios deterministas, con lo que el método genera elementos

arquitectonicos o decorativos (ver Figura 6.4d) (35).
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(d)

Figura 6.4. Superficies prefractales que simulan (a) terrenos con crateres, (b) terrenos montafiosos con fallas,

(c) cafiones y (d) elementos decorativos.

Como conclusiones, destacamos que el método presentado permite generar superficies
complejas y realistas a partir de funciones semillas sencillas. Ademas, este método otorga a
los disefiadores una gran capacidad de control gracias a los numerosos pardmetros de los
que dispone, siendo capaces de crear superficies deterministas tales como formas

arquitectonicas o superficies aleatorias tales como crateres, montafias y cafiones.

7. FUNCIONES FRACTALES

En la Seccién 6 hemos visto como la extensién del método de construccion de la curva de
Takagi a través de una suma infinita daba lugar a superficies con aspecto fractal. En esta
Seccién vamos a demostrar que esta extension, con funciones de R en R como primera
aproximacion, genera funciones efectivamente fractales. Para ello, vamos a utilizar el

operador contractivo de Read-Bajraktarevic (operador RB, en adelante).

El operador RB, que denotamos por E, es un operador que actda sobre funciones acotadas
para devolver funciones también acotadas. En particular, este operador es contractivo, esto
es, para cualesquiera dos funciones f'y g, la distancia entre Zf y Zg es menor o igual que entre
f v g; esto significa que el operador “contrae” el eje de ordenadas de la grafica de la funcion
sobre la que se aplica. Toda funcién f que sea igual al resultado de aplicar dicho operador

sobre ella misma (es decir, es un punto fijo, f = Zf), es una funcion fractal (36, 37).
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Por otra parte, sea el conjunto X cualquiera, definimos la clase G de funciones como el

conjunto de funciones g de X a R cuya expresion viene dada por

9 a,0) = Z on ¢ <|x y/‘l(}(:; a)|>’

donde a y 6 son parametros que detallaremos a continuacién, asi como el resto de los

elementos que integran la expresion. Por simplicidad, asumimos X = [0,1).

En primer lugar, consideramos un conjunto de M funciones, que denotamos por u,,, que
dividen el intervalo X en M subintervalos que no intersecan de amplitud a,,, con m =
1,2, ..., M, tales que ¥M_, a,, = 1. Es decir, las funciones u,, realizan una primera particién
(correspondiente a n = 1), de M elementos, del intervalo X, y si aplicamos de nuevo cada
funcién u,, sobre cada subintervalo, generaremos una segunda particidn (correspondiente
a n=2), de M? elementos. En general, si aplicamos cada funcién u,, sobre cada
subintervalo de la n — 1-ésima particién, generaremos la n-ésima particion, de M™
elementos, del intervalo X. Asi pues, dado un valor x € X, éste pertenecera a sucesivos
subintervalos de las sucesivas particiones. En particular, consideraremos que la particiéon

cero es el propio intervalo X.

Dada la n-ésima particion de X, denotamos por 4,,(x; a) a la funcién que devuelve la media
ponderada por el pardmetro « de los dos limites del subintervalo al que pertenece x; esto
es,sia = 0 entonces 4, (x; a) devuelve el limite inferior, sia = 1, 1,,(x; @) devuelve el limite
superior y si @ = 1/2 entonces 4,,(x; @) devuelve la media aritmética. Por otra parte,
denotamos por y,(x; @) a la funciéon que devuelve el producto de las amplitudes de los
sucesivos subintervalos a los que pertenece x, desde la primera particién hasta la n-ésima.
Por ultimo, denotamos por t a una funcién acotada cualquiera de X a R, y por 6 a un

parametro perteneciente al intervalo [0,1).

Utilizando el operador RB, demostramos que toda funcién g asi construida es un punto fijo
del operador, porlo que es una funcién fractal (20). Conceptualmente, lo que hace la funcién
g es lo siguiente: dado un n = 0,1,2 ..., aplica la funcién acotada t sobre una traslacion y
escalado del punto x en el propio eje X en funcién del subintervalo de la n-ésima particiéon
al que pertenece, y multiplica el valor de dicha funcién por 6™ para provocar una
contraccidn en el eje Y. De esta forma se consigue obtener la propiedad fractal de invariancia

por cambio de escala.

A modo de ejemplo, en la Figura 7.1 mostramos algunas funciones fractales de la clase G.
Notemos que la clase G es una clase que extiende la curva de Takagi (ver Figura 7.1a) para

contemplar funciones fractales muy diversas.
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Figura 7.1. Ejemplos de funciones fractales de la clase G. En particular, (a) funcién obtenida con {a,, a,} =
{1/2, 1/2},a =1/2,0 = 1/2y t(x) = 1/2 — x, (b) funcién obtenida con {a,, a,, as, a,} = {0,1,0,4,0,2,0,3},
a=1/2,0 =0,8yt(x) = exp(—x), (c), funcion obtenida con {a,, a,, as} = {0,5,0,35,0,15},a = 1/2,6 = 0,7y
t(x) = x* y (d) funcién obtenida con {a,, a,, a3} = {3/7,1/7,3/7},a = 1/2,6 = 0,8 y t(x) = x2.

8. TRANSFERENCIA TECNOLOGICA

Como consecuencia de obtener la patente ES2909950 de la Estructura de quasi-Sierpinski
genérica estudiada en la Seccién 2, mi director de tesis Jestis San Martin y yo deseamos ponerla
en conocimiento de la sociedad y obtener su explotacion, tanto por la satisfaccién personal de

ver cdmo la patente se desarrolla como por el deseo de contribuir a nuestra sociedad.

Por esta razon, nos apuntamos en marzo de 2022 a un programa de la Universidad
Politécnica de Madrid (UPM) de creaciéon de empresas, actiaupm, siendo seleccionados
para participar entre casi 400 proyectos solicitantes y obteniendo uno de los diez premios
a las mejores ideas de la primera fase. En noviembre de 2022 se realiz6 la entrega final de
premios, donde se nos comunicé que habiamos resultado entre los ocho mejores proyectos.

Paralelamente, también nos presentamos al programa UPM2T de comercializaciéon de
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tecnologias, en el que obtuvimos el segundo premio. En ambos programas rebautizamos la
estructura patentada como Distribuidor Optimo de Cargas (DOC), y decidimos que su
comercializacidn se haria mediante una startup que nosotros mismos fundariamos: Applied
Fractal Structures (AFS).

Gracias a nuestra participaciéon en actiaupm y UPM2T nos contact6é un fondo de inversion
que estaba interesado en nuestra startup. Tuvimos dos reuniones con este fondo de
inversion; en la primera nos pidieron mas detalles acerca de nuestro proyecto y en la
segunda nos realizaron una propuesta de constitucion de empresa que incluia la inversiéon
inicial de 1.000.000€ para el capital social de la empresa. Sin embargo, tras consultar la
propuesta con varios asesores, tanto de la UPM como externos, concluimos que para
nuestros intereses y para la startup la mejor decision era rechazar la propuesta del fondo

de inversidn y continuar desarrollando el proyecto por nuestra cuenta.

En los meses posteriores redefinimos el cliente objetivo hacia el que nos dirigiamos. En las
primeras fases del proyecto estdbamos totalmente orientados a multinacionales que
construyesen grandes infraestructuras en el mar, como los aeropuertos, ya que el DOC
presenta ventajas econémicas, temporales y ecoldgicas con respecto a la solucion actual, la
isla artificial. Sin embargo, la magnitud de estos proyectos y de las empresas que los llevan
a cabo hacen que sea practicamente imposible acceder a ellos desde una posiciéon de
empresa emergente como la nuestra. Por este motivo, empezamos a buscar clientes més
pequefios, y en primer lugar pensamos que el DOC es de interés para aquellas empresas que
realizan extensiones de ciudades costeras y construyen microislas con fines residenciales.
Yendo un paso mas alla, nos dimos cuenta de que el DOC puede usarse para construir
plataformas para que los hoteles y resorts de lujo que se encuentran en el mar dispongan
sus servicios, como restaurantes o tiendas. Asi pues, las cadenas hoteleras y sus inversores

son nuestro cliente objetivo mas pequefio.

Durante el desarrollo del proyecto hemos contactado con diferentes clientes potenciales,
desde multinacionales hasta inversores hoteleros. En particular, hemos tenido varias
reuniones con un inversor de hoteles en México y hemos contactado con el ministerio de
turismo de Mauricio. También hemos expuesto nuestro proyecto ante el director del Centro
de Desarrollo Tecnolégico e Innovacion (CDTI), Javier Ponce, y el exministro de Ciencia e
Innovacién Pedro Duque, entre otros, con el fin de que el CDTI valorase la posible inversion
de nuestro proyecto. El CDTI nos invité a solicitar fondos una vez que nos hubiéramos

constituido como empresa.

Respecto al desarrollo industrial del DOC, construimos un primer prototipo de la patente,

en acero y a tamafio real (ver Figura 8.1), para ser ensayado en laboratorio y comprobar

586 | Javier Rodriguez Cuadrado




Anales de la Real Academia de Doctores de Espaiia. Volumen 10, nimero 3 - 2025, paginas 561-592
Rodriguez Cuadrado, J. - Disefio geométrico éptimo de los escudos protectores de estructuras espaciales

que distribuye la carga uniformemente. Estos primeros ensayos no fueron satisfactorios
debido a unas malas condiciones del equipo de medida que llevaron a un desgaste del
prototipo, por lo que actualmente estamos construyendo una segunda estructura para

volver a ensayarla en unas condiciones ya corregidas.

En conclusién, nos encontramos a la espera de ensayar la estructura y obtener asi unos
resultados satisfactorios que nos permitan contactar con antiguos y nuevos clientes

partiendo de una posicién de mayor fortaleza al contar con el respaldo de los experimentos.

Figura 8.1. Prototipo en acero a tamafio real del DOC.

9. CONCLUSIONES

Hemos atendido a la protecciéon contra impactos de basura espacial disenando tres
estructuras fractales que distribuyen una carga puntual de manera uniforme, la cual es la
distribucion 6ptima al requerir la menor resistencia de la base sobre la que se apoya. La
primera es la Estructura de quasi-Sierpinski, en la cual se disponian apoyos fijos horizontales
en primera instancia por su facilidad de instalacion. Sin embargo, esta disposicién implicaba
que los apoyos tuvieran que desplazarse verticalmente (instalando, por ejemplo, muelles), y
encontramos que estos desplazamientos seguian una combinacién lineal de una funcién
fractal: la curva de Takagi. Para evitar tener que colocar apoyos que se desplazaran siguiendo
una complicada curva fractal relajamos las condiciones de disefio, llegando a la Estructura de
quasi-Sierpinski genérica (patentada), cuyos apoyos son moviles horizontalmente. Esta
estructura consigue la distribucion uniforme sin tener que desplazar sus apoyos

verticalmente, lo que la hace idonea para cimentar en suelos poco resistentes, como el marino.
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También hemos extendido esta estructura a un disefio tridimensional, la Piramide de quasi-

Sierpinski (también patentada), con propiedades y aplicaciones similares.

El estudio de la proteccidn frente a la radiaciéon nos ha llevado a comparar diferentes
distribuciones de masa: porosa en rejilla, hexagonal y aleatoria y multicapa. Hemos
concluido mediante métodos numéricos que las distribuciones porosas ofrecen, en
promedio, el mismo nivel de proteccién entre si y que la multicapa cuando su ntimero de
poros tiende a infinito. Sin embargo, hemos encontrado que las distribuciones regulares
ofrecen un nivel de proteccién menor para ciertos dngulos, por lo que es preferible usar
distribuciones aleatorias. El analisis radiolégico y de la disipacién del calor asociado lo
hemos completado mediante un estudio en el que concluimos que las mixturas asimétricas
de Koch son efectivas para drenar el calor. En particular, hemos visto que los fractales sélo
son utiles para disipar el calor cuando estan desarrollados sélo en las zonas cercanas a la

fuente de calor.

La investigacion completada en la tesis nos ha llevado al estudio de otros problemas
derivados, como el calculo de las deformaciones de estructuras arbdéreas cuando son
cargadas en su copa. Hemos concluido que la forma deformada de las estructuras arbéreas
estudiadas es una combinacién de tres fractales: el arbol binario que representa su forma
sin carga, la curva de Takagi que determina sus desplazamientos verticales y la funcién S-
Cantor que determina sus desplazamientos horizontales. De hecho, las dimensiones
fractales de la curva de Takagi y de la funciéon f-Cantor estan relacionadas mediante un

pardmetro mecanico de la estructura.

Otro problema que hemos considerado es la generacion de superficies prefractales que
simulan terrenos y elementos arquitecténicos. El método de generacidén que hemos creado
tiene aplicacion directa en simuladores, videojuegos y el metaverso ya que ofrece una gran
capacidad de control al disefiador, por su elevado nimero de parametros, y versatilidad, al
generar indistintamente superficies deterministas y aleatorias. En relaciéon con este
problema, hemos definido una cierta clase de funciones que hemos demostrado que son
efectivamente fractales, demostracién que hemos realizado usando el operador contractivo

de Read-Bajraktarevic.

Por ultimo, estamos transfiriendo la tecnologia de una de las patentes concedidas al
mercado mediante la creacidn de una startup. Concluimos que este proceso de transferencia
requiere de un gran desarrollo de los aspectos de la tecnologia no relacionados con la propia
investigacion, tales como identificacion de clientes, estudio de mercado, modelos de

negocio, etc.
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